• Title/Summary/Keyword: 블레이드 설치각

Search Result 18, Processing Time 0.022 seconds

Study on HAT Current Generation Rotor (수평축 해류발전 로터의 설계와 성능해석)

  • 조철희;김경수;민경훈;양태열;이현상
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.58-63
    • /
    • 2002
  • In this research, a design guideline of current generating HAT rotor and acceptable field rotor in offshore environment is proposed. To design HAT rotor model, wind mill rotor design principles and turbine theories were applied based on a field HAT rotor experimental data. To verify the compatibility of the rotor design method and to analyze the properties of design factors, 3 rotor models were designed and experimented in a circular water channel. Three rotor models were designed according to different blade numbers and blade shapes. By changing flow velocity, rotor rpm, the rotor power and efficiency were measured and the properties of rotor were estimated. The results can be effectively applied to the design of current generation rotor.

Development of the Rotational Smart Lighting Control System Using Artificial Light for Plant Factory (식물공장을 위한 인공광 회전형 스마트 조명 제어시스템 개발)

  • Lee, Won-Sub;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1474-1479
    • /
    • 2012
  • Rotational smart lighting control system provides artificial light to plants on planting board by rotational lighting system. As the lighting system of existing plant factory has high cost problem due to the installation for many lighting equipments, the lighting system was developed to rotate less number of lighting equipments to reduce cost. In this paper, the illuminance, luminous flux and photosynthetic photon flux density(PPFD) that plants need to grow were calculated. And the light intensity at each measured location considering the rotational speed of blade were analyzed by the simulation and the experiment.

Numerical Analysis of Heat Transfer Characteristics of Ribbed Channels with Different Film Cooling Hole Position (필름 냉각을 위한 리브드 채널의 홀 위치에 따른 열전달 특성 수치 해석)

  • Park, Jee Min;Moon, Joo Hyun;Lee, Hyung Ju;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.69-76
    • /
    • 2018
  • The present study analyzed the effect of film hole position of 45 degree ribbed cooling channel on film cooling performance of gas turbine blades. We also investigated the influence of the ribs under the fixed blowing ratio. Three-dimensional numerical model was constructed and extensive simulation was conducted using the commercial code (Fluent ver. 17.0) under steady-state condition. Base on the simulation results, We investigated the cooling effectiveness, flow velocity, streamline, and pressure coefficient. Moreover, We analyzed the effect of cooling hole position on ejection of the secondary flow caused by the rib structure. From the results, It was found that internal flow of the cooling channel forms a vortex pair in the counterclockwise from the top side, and clockwise from the bottom side. For the channels with ribs, the vortex flow generated by the ribs caused a higher pressure difference near the hole outlet, resulting in at least 12% higher cooling effectiveness than the channel without ribs. Additionally, when the hole is located on the left side of the ribbed channel (Rib-Left), it can be found that the secondary flow generated by the ribs hits against wall surface near the hole to form a flow in the direction of the hole inclination angle. Therefore, It is considered that the region where the cooling gas discharged to the blade surface stays in the main flow boundary layer is wider than the other cases. In this case, The largest pressure coefficient difference was observed near the outlet of the hole, and as a result, the discharge of the cooling gas was accelerated and the cooling efficiency was slightly increased.

Simulation Modeling cnd Analysis of Pitch Controlled Variable Speed Wind Turbine System (피치제어형 가변속 풍력터빈 시스템의 시뮬레이션 모델링과 해석)

  • Kim, Eel-Hwan;Kang, Geong-Bo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.124-130
    • /
    • 2005
  • This paper presents the simulation modeling and analysis of variable wind speed turbine system(VWTS) using Psim program In the simulation, using the Vestas V47 VWTS located in Hangwon wind farm in Jeju-Do as a model, wind model, blade model, pitch control model and grided connected generator are modeled. The VWTS is controlled by the optimal pitch angle for maximum output power under the rated wind speed and for the rated output power over the rated wind speed. To verify the effectiveness of proposed method, simulation results are compared with the actual data from the model system According to the comparison of these results, this method shows excellent performance. So it is very useful for understanding and applications of wind power control system.

Design and Evaluation of Vaned Pipe Bends of Liquid Propellant for Satellite Launch Vehicles (소형위성 발사체용 액체 추진제 곡관 배관 설계 및 유동 성능 해석)

  • Lee Hee Joon;Han Sang Yeop;Ha Sung Up;Kim Young Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • The use of pipe-bends brings about non-uniform flows at the exit of them due to the velocity difference between inner and outer flows inside the bend. These phenomena may cause turbopump of satellite launch vehicle to run off-design and reduce its efficiency, and also introduce unstable influx of propellants to engine manifold after passing through a turbopump. In order to improve the uniformity of flow at the bend exit, certain turning vanes are set up in the bend pipe normally. Correspondingly the design is an $90^{\circ}\;and\;45^{\circ}$ bend pipes that incorporate with the maximum three turning vanes. All designs were analyzed with numerical analysis by solving the Navier-Stokes equations in three dimensions in case of each respective fuel and oxidizer. Evaluations of the vaned pipe bends designs were accomplished by the velocity magnitude distributions and the predicted pressure drops. We could find that the more vaned bend pipe and larger angle pipe under consideration effectively, the more uniform velocity magnitude of the bend and pressure losses.

Turbulent Heat Transfer and Friction in Four-Wall Convergent/Divergent Square Channels with One Ribbed Wall (한면에 리브가 설치된 4벽면 수축/확대 채널의 난류 열전달과 유체마찰)

  • Ahn, Soo Whan;Lee, Myung Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.773-778
    • /
    • 2015
  • The local heat transfer and pressure drop of developed turbulent flows in convergent/divergent channels with square axial cross-sectional areas were experimentally investigated to improve the channel design, such as a gas turbine cooling system. Square convergent/divergent channels with one ribbed wall were manufactured with a fixed rib height e of 10 mm and a ratio of rib spacing p to height e of 10. The measurement was conducted for Reynolds numbers from 15,000 to 89,000. Convergent, divergent, and straight channels with ratios $D_{ho}/D_{hi}$ of 0.75, 1.33, and 1.0, respectively, are considered. Of the three channel types, the ribbed divergent channel was found to produce the best thermal performance under identical flow rate, pumping power, and pressure loss conditions.

Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand (실내 굴진 시험을 통한 폼 주입 조건에 따른 인공 사질토 지반에서 EPB TBM 굴진성능에 대한 고찰)

  • Lee, Hyobum;Shin, Dahan;Kim, Dae-Young;Shin, Young Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.545-560
    • /
    • 2019
  • During EPB TBM tunnelling, an appropriate application of additives such as foam and polymer is an essential factor to secure the stability of TBM as well as tunnelling performance. From the '90s, there have been many studies on the optimal injection of additives worldwidely contrary to the domestic situation. Therefore, in this paper, the foam, which is widely adopted for soil conditioning, was selected as an additive in order to investigate the effect of foam injection on TBM performance through a series of laboratory excavation tests. The excavation experiments were carried out on artificial sandy soil specimens with consideration of the variance of FIR (Foam Injection Ratio), FER (Foam Expansion Ratio) and $C_f$ (Surfactant Concentration), which indicate the amount and quality of the foam. During the tests, torque values were measured, and the workability of conditioned soil was evaluated by comparing the slump values of muck after each experiment. In addition, a weight loss of the replaceable aluminum cutter bits installed on the blade was measured to estimate the degree of abrasion. Finally, the foam injection ratio for the optimal TBM excavation for the typical soil specimen was determined by comparing the measured torque, slump value and abrasion. Note that the foam injection conditions satisfying the appropriate level of machine load, mechanical wear and workability are essential in the EPB TBM operational design.

Development of a Rotation Swab Pig Method for Cleaning Water Pipes (상수관의 세척을 위한 회전식 스왑피그 공법 개발)

  • Kicheol Lee;Jaeho Kim;Kisung Kim;Jeongjun Park
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.63-75
    • /
    • 2024
  • Drinking water is an essential element to ensure the basic human right to live, and the quality of clean water must always be ensured. However, domestic water facilities, which were installed intensively in the early 2000s, are deteriorating. The accidents such as discoloration of water such as chromaticity and turbidity as well as leakage of substances frequently occur. However, since it is virtually impossible to replace all water pipes, the detailed standards for maintenance of water pipe network facilities established in 2021 require water pipe cleaning. The swab pig method, one of the water pipe cleaning methods, is a method of physically removing substances in pipes and is evaluated as having the highest cleaning efficiency. However, Swab is highly likely to be damaged or deformed during the cleaning process, and may even be lost. Therefore, in this study, the material of the pig was changed to a material with high compressibility, and it was made as close as possible to the inner wall of the water pipe. And, to maximize cleaning efficiency, a rotation swab pig with a rotation blade was developed. In addition, high-strength wire and winding equipment were additionally developed to eliminate the possibility of loss and to determine the location of the pig. The inlet and outlet are connected with wires, and after verifying the performance of each detailed technology, the technology was applied on a test bed with a 30m section. As a result of the application, the performance of the technology was verified by measuring the process time and evaluating applicability.