• 제목/요약/키워드: 블랙아이스

검색결과 22건 처리시간 0.032초

IoT 센서를 이용한 블랙아이스 탐지에 관한 연구 - 실증 인프라 구축 - (Research on black ice detection using IoT sensors - Building a demonstration infrastructure -)

  • 손민우;이병현;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.263-263
    • /
    • 2023
  • 블랙아이스는 눈에 쉽게 구분되지 않아 많은 교통사고를 초래하고 있다. 한국교통연구원 교통사고분석시스템에 따르면, 2017년부터 2021년까지 5년간의 서리/결빙으로 인한 교통사고 사망자는 122명, 적설로 인한 교통사고 사망자는 40명으로, 블랙아이스는 적설에 비해 위험성이 높은 것으로 나타난다. 과거의 다양한 연구에서 블랙아이스 생성조건을 기압과 한기 축적등의 조건에서 예측해왔지만, 이러한 기상학적 모델은 봄철 해빙기의 일교차로 인한 눈의 해동과 재냉각과 같은 다양한 기상 조건에서의 블랙아이스 탐지가 어렵다는 한계가 있어 최근에는 이미지 판별과 딥러닝모델(YOLO 등)을 기반으로 한 센서가 제시되고 있다. 그러나, 이러한 방법은 충분한 컴퓨팅 자원이 뒷받침되어야 하며, 블랙아이스 탐지까지 걸리는 속도가 빠르지 못한 편으로, 블랙아이스 초입 구간에서의 제동에 취약하다는 잠재적인 약점을 가지고 있다. 그러므로 본 연구에서는 블랙아이스의 주 원인인 서리나 어는비가 발생하기 위해서 주변 공기가 이슬점 온도 이하, 노면온도와 이슬점이 어는점보다 낮아야 함을 이용, IoT 센서 모듈을 통해 Magnus 방정식으로 계산한 이슬점 온도와 노면 온도를 사용하는 이동식 블랙아이스 추정 장치를 제시한다. 본 장치는 대기압, 온도, 습도로부터 계산된 이슬점 온도와 노면 온도를 통한 서리발생 가능성과 대기 온도, 노면 온도를 통해 어는비의 발생환경 여부를 계산한다. 본 연구 결과를 통해 블랙아이스 추정과 기상정보 생산을 동시에 가능케 하며, 추정 결과를 통합 수집서버에 전송함으로서 운전자에게 전방 블랙아이스 위험 구간을 조기에 전달하는 시스템과 이를 관리하기 위한 인프라를 구축하여 운전 시 결빙 미끄러짐 사고를 저감하고자 한다.

  • PDF

국토 교통 공공데이터 기반 블랙아이스 발생 구간 예측 모델 (Black Ice Formation Prediction Model Based on Public Data in Land, Infrastructure and Transport Domain)

  • 나정호;윤성호;오효정
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권7호
    • /
    • pp.257-262
    • /
    • 2021
  • 매년 동절기 블랙아이스(Black Ice)로 인한 사고는 빈번하게 발생하고 있으며, 치사율은 다른 교통사고에 비해 매우 높다. 따라서 블랙아이스 발생 구간을 사전에 예측하기 위한 체계화된 방법이 필요하다. 이에 본 논문에서는 이질(heterogeneous)·다형(diverse)의 데이터를 활용한 블랙아이스 발생 구간 예측 모델을 제안한다. 이를 위해 국토 교통 공공데이터와 기상 공공데이터 42종의 12,574,630건을 수집하여, 결측값을 처리하고 정규화하는 등의 전처리 과정을 수행한 뒤 최종 약 60만여 건의 정제 데이터셋을 구축하였다. 수집된 요인들의 상관관계를 분석하여 블랙아이스 예측에 유효한 영향을 주는 21개 요인을 선별, 다양한 학습모델을 조합하는 방법을 통해 블랙아이스 발생 예측 모델을 구현하였다. 이를 통해 개발된 예측 모델은 최종적으로 노선별 블랙아이스 위험지수 도출에 사용되어 블랙아이스 발생 경고 서비스를 위한 사전 연구로 활용될 것이다.

센서를 활용한 블랙 아이스 탐색 기법 고찰 (Survey of Distinction of Black Ice Using Sensors)

  • 김진영;이혜진;백주련
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제61차 동계학술대회논문집 28권1호
    • /
    • pp.79-81
    • /
    • 2020
  • 최근 블랙 아이스에 의한 사고 사례가 많다. 블랙 아이스는 사람의 눈으로 식별하기 힘들고, 보인다 하더라도 도로가 조금 젖은 것으로 판단할 가능성이 높아 차량 사고를 유발할 확률이 높다. 본 논문에서는 블랙 아이스로 인한 사고를 조금이라도 줄이기 위해 센서를 통하여 블랙 아이스를 판별하고 사전 예방할 수 있는 방법과 해결책에 대해 고찰해보고자 한다.

  • PDF

MobileNetV2 기반의 개선된 Lightweight 모델을 이용한 열화도로 영상에서의 블랙 아이스 인식 (A Black Ice Recognition in Infrared Road Images Using Improved Lightweight Model Based on MobileNetV2)

  • 이옥걸;강선경
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1835-1845
    • /
    • 2021
  • 본 논문에서는 블랙 아이스를 정확하게 인식하고 도로 노면 정보를 운전자에게 미리 알려줘서 속도를 제어하고 예방 조치를 취할 수 있도록 하기 위해 열화 도로 영상을 기반으로 블랙 아이스 검출하기 위해 lightweight 네트워크를 제안한다. 전이학습을 이용하여 블랙 아이스 인식 실험을 하였고, 블랙 아이스 인식의 정확도 향상을 위해 MobileNetV2 기반의 개선된 lightweight 네트워크를 개발하였다. 계산량을 줄이기 위해 Linear Bottleneck 및 Inverted Residuals를 활용하여 4개의 Bottleneck 그룹을 사용하고 모델의 인식률 향상을 위해 각 Bottleneck 그룹에 3×3 컨볼루션 레이어를 연결하여 지역적 특징 추출을 강화하고 특징 맵의 수를 늘렸다. 마지막으로 구축된 블랙 아이스 데이터 세트 대상으로 블랙 아이스 인식 실험을 진행하였으며, 제안된 모델은 블랙 아이스에 대해 99.07%의 정확한 인식률을 나타내었다.

능동 음파의 반사 신호와 기계학습을 이용한 테스트 벤치에서의 비접촉기반 재질 인식 (Non-Contact Material Recognition from Test-bench using Reflected Signal from Active Sound Wave and Machine Learning)

  • 김민현;강지훈;정중은
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.506-508
    • /
    • 2023
  • 비접촉 음파 센서와 기계학습을 결합하여 도로 표면의 투명한 블랙아이스 감지 및 노면 분류 97%의 정확도를 달성한 새로운 접근 방법을 제안한다. 개발된 시스템은 블랙아이스를 포함한 다양한 물질의 반사 특성을 분석하여 미끄러운 도로 상황을 실시간 감지 및 예측이 가능하여 도로 안정성을 향상한다. 본 연구에서는 테스트 벤치와 투명하고 미끄러운 물질을 이용하여 블랙아이스를 감지할 수 있는 기술의 정확도를 비교하며, 실험 결과를 통해 제안된 블랙아이스 감지 방법의 타당성을 입증하고자 한다.

적외선 카메라와 YOLO를 사용한 블랙아이스 탐지 방법 (A Black Ice Detection Method Using Infrared Camera and YOLO)

  • 김형균;장민석;이연식
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1874-1881
    • /
    • 2021
  • 폭설로 인한 도로 미끄러짐과 함께 영하의 기온으로 도로와 차량 통행용 다리, 터널 출입구 쪽에서 주로 발생하는 블랙아이스는 운전자의 시야에서는 아스팔트의 이미지가 투과되어 보이기에 잘 인식되지 않아서 자동차들이 미끄러지는 (슬립 현상) 상황을 발생시키기에 차량이 제동력을 잃어서, 대형 교통사고로 이어져 심각한 인명과 재산상 손실을 초래하고 있다. 본 논문에서는 기존에 연구되었던 블랙아이스 감지 방법들(인공위성 촬영, 초음파 수신으로 미끄러짐의 패턴을 확인, 도로 표면의 온도측정, 차량 주행 중 타이어의 마찰력 차이를 확인하기)의 단점들을 보완하고, 블랙아이스를 감지하는 센서의 크기를 줄여서 많은 이동체에 적용할 수 있도록 하고자 적외선 카메라를 이용하여 도로 상태를 확인하고, 이 정보를 딥러닝 학습을 통하여 블랙아이스를 판별하는 방법을 제안하고자 한다.

실시간 영상이미지 분석을 통한 아스팔트 콘크리트 포장의 노면 상태 인식 및 블랙아이스 예방시스템 (Real-time Road Surface Recognition and Black Ice Prevention System for Asphalt Concrete Pavements using Image Analysis)

  • 정회평;송호민;최영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권1호
    • /
    • pp.82-89
    • /
    • 2024
  • 블랙 아이스는 인지하기가 매우 어렵고 도로 노면의 마찰력이 감소하여 자동차 사고를 유발한다. 도로 노면의 블랙아이스 방지를 위한 다양한 연구가 수행되었으나, 실시간으로 블랙아이스를 식별하고 운전자에게 경고하는 시스템에 대한 연구는 매우 미흡한 실정이다. 본 논문에서는 아스팔트 도로 노면의 상태를 실시간적으로 식별하기 위해 이미지기반 분석 시스템을 개발하였다. 이를 위해 각 아스팔트 도로 노면 이미지에 대해 데이터 세트를 구축한 다음 딥러닝을 통해 노면의 상태를 건조, 젖음, 블랙아이스, 눈 노면 상태로 식별하였다. 또한, 이미지 분석결과와 더불어 도로 노면 상태의 최종판별을 위해 실제 노면에서 측정된 온도와 습도 데이터를 사용하였다. 도로 노면의 특성이 블랙아이스로 판정이 나면, 도로에 설치된 염수 분사장치가 자동으로 작동하도록 하였다. 본 연구에서 개발된 아스팔트 콘크리트 포장에 대한 노면 상태 식별 시스템과 블랙아이스 자동 예방 시스템은 운전자의 안전운행을 보장하고 교통사고 발생률을 낮출 수 있을 것으로 기대된다.

컬러 이미지 분석을 통한 블랙 아이스 검출 방법 연구 (Study of Black Ice Detection Method through Color Image Analysis)

  • 박필원;한성수
    • Journal of Platform Technology
    • /
    • 제9권4호
    • /
    • pp.90-96
    • /
    • 2021
  • 현재 개발중인 그리고 운행중인 대부분의 자동차에는 다양한 IoT 센서들이 탑재되어 있지만, 자동차 사고를 일으키는 요인 중 몇몇 요인들은 상대적으로 탐지하기 힘들다. 이러한 요소 중 대표적인 위험 요인 중 하나가 블랙 아이스이다. 블랙 아이스는 블랙 아이스가 깔린 부분을 지나가는 모든 차량에 영향을 줄 수 있어 대형 사고를 유발할 가능성이 가장 높은 요인 중 하나이다. 따라서 대형 사고를 막기 위해 블랙 아이스 검출기법은 꼭 필요하다. 이를 위해 몇몇 연구가 과거 진행되었으나 몇몇 부분에서 현실적이지 않는 요소들이 반영된 경우가 있어, 이를 보충하기 위한 연구가 필요하다. 본 논문에서는 CNN 기법으로 컬러 이미지를 분석하여 블랙 아이스를 탐지하고자 하였으며, 일정 수준의 블랙 아이스 탐지에 성공하였다. 다만 기존 연구 와 차이가 있어 그 이유를 분석하였다.

단일 라이다 센서를 이용한 도로환경 블랙아이스 검출 한계 (Road Environment Black Ice Detection Limits Using a Single LIDAR Sensor)

  • 김성태;최원혁;박제홍;홍석민;임영근
    • 한국항행학회논문지
    • /
    • 제27권6호
    • /
    • pp.865-870
    • /
    • 2023
  • 본 논문은 LiDAR (light detection and ranging) 센서를 활용하여 블랙아이스를 검출하는 새로운 방법을 제안합니다. 센서는 작고 비용이 저렴하면서도 높은 정확성을 가진 거리 측정 센서로 온도와 경사각을 다르게 하여 아스팔트와 블랙아이스의 각도를 구별하는 데 사용됩니다. 이 센서의 거리 측정 오차율은 대략 ±1 cm로 블랙아이스와 아스팔트을 구별하는 데에는 일부 오차가 발생할 수 있습니다. 본 논문에서는 정확성을 높이기 위한 추가적인 연구와 개선이 필요함을 지적하며 이를 통해 더욱 정확한 블랙아이스 검출 방법을 제안합니다.

블랙아이스 경고 네비게이션 제안 (Suggestion of a Navigation application warning of Black-Ice)

  • 박지성;장민석;배석찬;이연식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.608-611
    • /
    • 2022
  • 기존 내비게이션 어플은 주로 과속단속을 알려주는 기능이 주기능이며, 블랙아이스 위치를 경고해주지는 않는다. 만약 내비게이션 어플이 이 기능을 수행한다면 교통사고 저감에 큰 효과를 발휘할 것이다. 따라서 본 논문에서는 블랙아이스를 탐지하는 방법과 이를 경고해주는 내비게이션 어플을 제안하고자 한다.

  • PDF