• Title/Summary/Keyword: 블랙박스 테스트

Search Result 41, Processing Time 0.02 seconds

An Iterative Data-Flow Optimal Scheduling Algorithm based on Genetic Algorithm for High-Performance Multiprocessor (고성능 멀티프로세서를 위한 유전 알고리즘 기반의 반복 데이터흐름 최적화 스케줄링 알고리즘)

  • Chang, Jeong-Uk;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.115-121
    • /
    • 2015
  • In this paper, we proposed an iterative data-flow optimal scheduling algorithm based on genetic algorithm for high-performance multiprocessor. The basic hardware model can be extended to include detailed features of the multiprocessor architecture. This is illustrated by implementing a hardware model that requires routing the data transfers over a communication network with a limited capacity. The scheduling method consists of three layers. In the top layer a genetic algorithm takes care of the optimization. It generates different permutations of operations, that are passed on to the middle layer. The global scheduling makes the main scheduling decisions based on a permutation of operations. Details of the hardware model are not considered in this layer. This is done in the bottom layer by the black-box scheduling. It completes the scheduling of an operation and ensures that the detailed hardware model is obeyed. Both scheduling method can insert cycles in the schedule to ensure that a valid schedule is always found quickly. In order to test the performance of the scheduling method, the results of benchmark of the five filters show that the scheduling method is able to find good quality schedules in reasonable time.