• 제목/요약/키워드: 브레이징 접합계면

검색결과 40건 처리시간 0.025초

은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징 (Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals)

  • 허대;김대훈;천병선
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

브레이징한 Ti/Cu 접합계면부의 미세조직 특성 (A Characteristic of Microstructures in Bonding Interlayer of Brazed Titanium to Copper)

  • 김우열;정병호;이성렬
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.106-115
    • /
    • 1995
  • To know the bonding phenomena of Ti/Cu brazed joint, a characteristic of microstructures in bonding interlayer of vacuum brazed pure Ti to Cu has been studied in the temperature range from 1088 to 1133K for various bonding times using Ag-28wt%Cu filler metal. Also intermediate phases formed in bonded interlayer and behavior of layer growth have been investigated. The obtained results in this study are as follows: 1) Liquid insert metal width at the each brazing temperature was proportional to the square root of brazing time, and it was considered that the liquid insert metal width was controlled by the diffusion rate process of primary .alpha.-Cu formed at the Ti side. 2) Intermediate phases formed near the Ti interface were .betha.-Ti and intermetallic compounds TiCu, Ti$_{2}$Cu, Ti$_{3}$Cu, and TiCu. 3) .betha.-Ti formed in Ti base metal durig brazing transformed to lamellar structure, .alpha.-Ti + Ti$_{2}$Cu. The structure came from the eutectoil decomposition reaction in cooling. And the width of .betha.-Ti layer was proportional to the square root of brazing time, and it was considered that the growth of .betha.-Ti layer was controlled by interdiffusion rate process in .betha.-Ti. 4) The layer growth of TiCu, Ti$_{3}$Cu$_{4}$ and TiCu, phases formed near the Ti interface was linerface was linearly proportional to the brazing time, and it was considered that the layer growth of these phases was controlled by the chemical reaction rate at the interface.

  • PDF

A357을 이용한 알루미늄 반응고 브레이징 접합 계면 특성 (Microstructures of Bonding Interfaces after Semi-Solid Brazing of Aluminum Using A357 as a Filler Metal)

  • 이상용
    • 소성∙가공
    • /
    • 제21권8호
    • /
    • pp.506-511
    • /
    • 2012
  • Aluminum brazing normally requires a careful control of temperature due to the small interval between brazing and melting temperatures for base materials. Unsuitable processing conditions, including brazing temperature outside admissible range, gap between brazed materials or inadequate flux feeding, can lead to joining defects. In this study, A357 was used as a filler metal for the brazing of pure aluminum base materials and brazed at temperatures in the semi-solid state. Interface microstructures with base materials were observed using optical metallography(OM) and scanning electron microcopy(SEM) with energy dispersive spectroscopy(EDS), and compared to conventional aluminum brazing.

고온 진공 브레이징을 이용한 초경합금과 스테인리스강의 접합 계면 특성 (Analysis of Bonding Interfaces between Cemented Carbide and Stainless Steel made via Hot Vacuum Brazing)

  • 박동환;현경환;권혁홍
    • 소성∙가공
    • /
    • 제29권6호
    • /
    • pp.307-315
    • /
    • 2020
  • The cemented carbide and stainless steel were bonded using a hot-vacuum brazing method to analyze the bonding interface. Since it is suitable for the hot vacuum brazing, nickel metal was used as a binder among the main components of the cemented carbide, and a new cemented carbide material was developed by adjusting the alloy composition. The paste, which is one of the important factors affecting the hot vacuum brazing bonding, was able to improve brazing adhesion by mixing solder as Ni powder and a binder as an organic compound at an appropriate ratio. Division of the stainless steel yielded a dense brazing result. This study elucidated the interfacial characteristics of wear-resistant parts by bonding stainless steel and cemented carbide via hot vacuum brazing.

${Al}_{2}{O}_{3}$/304스트레인레스강 접합체 계면구조가 접합강도에 미치는 영향 (The Errect of Interfacial Structure on the Bonding Strength in ${Al}_{2}{O}_{3}$/304 Joint)

  • 김병무;강정윤;이상래
    • 한국재료학회지
    • /
    • 제3권3호
    • /
    • pp.282-291
    • /
    • 1993
  • 첨가원소를 달리한 두 종류의 삽입금속 Cu-10tw% Ti합금과 Cu-7.5wt% Zr 합금을 사용하여 알루미나와 304 스테인레스강을 활성브레이징법으로 접합하였을 때 두 접합체 계면의 반응층생성구조를 비교조사하여 다으모가 같은 결과를 얻었다. Cu-10tw% Ti삽입금속을 사용한 접합체의 알루미나쪽 반응층은 단층구조를 이루고 있었으나 Cu-7.5wt% Zr삽입금속을 사용한 경우 반응층은 이중구조를 이루고 있었다. 이는 두 종류의 서로 다른 삽입금속이 용융상태에서 알루미나 표면에 갖는 젖음성(wettability)차이에 기인하는 것으로 사료되며 이러한 반응층의 생성구조는 접합강도에 지대한 영향을 미치는 것으로 확인되었다. Cu-10wt% Ti 삽입금속을 사용한 경우 모든 접합조건에서 열응력에 의한 모서리 균열(dege crack)이 관찰되었으나 Cu-7.5wt% Zr 삽입금속을 사용한 경우 적정 접합조건을 선정하면 반응층의 이중구조를 통애 열응력을 완화시킴으로써 균열발생을 억제하여 1323K $\times$ 0.6Ks의 접합조건에서 비교적 높은 약 86MPa의 전단강도값을 얻을 수 있었다.

  • PDF

$Al_2O_3/Al$ 6061의 접합부 계면특성에 관한 연구 (A study on Brazing Interfacial Properties of $Al_2O_3/Al$ 6061)

  • 서상용;안병건;이규용
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.74-79
    • /
    • 2003
  • Alumina($Al_2O_3$) and Al 6061 were brazed by using Al-12wt% Si filler metal in a high vacuum environment. The interfacial microstructure and mechanical properties of the joints were investigated. The results obtained were as follows. (1) The maximum tensile strength of 54Mpa was acquired at the processing conditions of high vacuum ($3{\times}10^{-6}Torr$), $620^{\circ}C$ and 10min, but this condition will not be used in the industrial area due to high evaporation of Al alloy composition. (2) Reaction products for holding time and brazing temperature worked as stress relieve layer and the fractures after the mechanical properties test were occurred to the ceramic side or reaction layer. (3) The glancing angle X-ray diffraction analysis for the reaction product of $Al_2O_3/Al$ 6061 were processed. the joint strengths were low due to existed $Al_2Si_5\;and\;SiO_2$.

  • PDF

은계(BAg) 삽입금속으로 접합된 초경합금 입자와 탄소강 브레이징부의 특성 (Characteristics of the Brazed Joint between Superhard Alloy Particles and Carbon Steel Using BAg System Insert Metals.)

  • 김광수;김상덕
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.298-302
    • /
    • 2008
  • 초경합금입자와 탄소강사이의 브레이징 접합부 특성을 평가하였다 선택된 두 종류의 삽입금속은 기계적 합금 공정으로 만들어졌다. 한 가지는 Cu, Zn, Ag (MIM-1) 그리고 다른 한 가지는 Cu, Zn, Ag과 Cd(MIM-2)로 구성하였다. 삽입금속들의 화학조성은 AWS BAg-20계와 BAg-2a계의 성분과 유사하였다. 그리고 상용삽입금속들(CIM-1, CIM-2) 역시 비교 평가하였다. 삽입금속들의 특성은 젖음성 시험, 전단강도 시험, 그리고 미세조직 관찰로서 나타내었다. 젖음성 시험에서 MIM-1과 CIM-1 삽입금속의 젖음각이 MIM-2와 CIM-2보다 크게 나타났고, MIM-1의 젖음각이 CIM-1보다 더 큰 값을 나타났지만 모든 경우 젖음각이 $25^{\circ}$보다 작았다. 삽입금속, MIM-1이 가장 높은 전단강도를 나타냈고, 그 값은 $2.29{\times}10^2MPa$로 측정되었다. 이 값은 상용 삽입금속의 값과 같거나 높은 것으로 나타났다. 삽입금속의 미세조직은 Cu-rich 초정영역과 Ag-rich 공정영역으로 구성되었다. MIM-1계로 만들어진 초경합금과 탄소강의 접합부는 일부 접합부 계면에 기공을 포함하지만 초정을 기지로 하는 안정적인 미세조직을 나타냈다.

Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구 (A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

다이아몬드 Grit(흑연)/ Cu-13Sn-12Ti 필러합금 진공 브레이징 접합체의 젖음성 및 계면반응 (The wetting and interfacial reaction of vacuum brazed junction between diamond grit(graphite) and Cu-13Sn-12Ti filler alloy)

  • 함종오;;이지환
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.66-66
    • /
    • 2009
  • Various alloy system, such as Cu-Sn-Ti, Cu-Ag-Ti, and Ni-B-Cr-based alloy are used for the brazing of diamond grits. However, the problem of the adhesion strength between the diamond grits and the brazed alloy is presented. The adhesion strength between the diamond grits and the melting filler alloy is predicted by the contact angle, thereby, instead of diamond grit, the study on the wettability between the graphite and the brazing alloy has been indirectly executed. In this study, Cu-13Sn-12Ti filler alloy was manufactured, and the contact angles, the shear strengths and the interfacial area between the graphites(diamond grits) and braze matrix were investigated. The contact angle was decreased on increasing holding time and temperature. The results of shear strength of the graphite joints brazed filler alloys were observed that the joints applied Cu-13Sn-12Ti alloy at brazing temperature 940 $^{\circ}C$ was very sound condition indicating the shear tensile value of 23.8 MPa because of existing the widest carbide(TiC) reaction layers. The micrograph of wettability of the diamond grit brazed filler alloys were observed that the brazement applied Cu-13Sn-12Ti alloy at brazing temperature $990^{\circ}C$ was very sound condition because of existing a few TiC grains in the vicinity of the TiC layers.

  • PDF

다이아몬드 grit(흑연) / Cu-13Sn-12Ti 삽입금속 진공 브레이징 접합체의 젖음성 및 계면반응 (The Wetting and Interfacial Reaction of Vacuum Brazed Joint between Diamond Grit(graphite) and Cu-13Sn-12Ti Filler Alloy)

  • 함종오;이지환
    • Journal of Welding and Joining
    • /
    • 제28권3호
    • /
    • pp.49-58
    • /
    • 2010
  • Various alloy system, such as Cu-Sn-Ti, Cu-Ag-Ti, and Ni-B-Cr-based alloy are used for the brazing of diamond grits. However, the problem of the adhesion strength between the diamond grits and the brazed alloy is presented. The adhesion strength between the diamond grits and the melting filler alloy is predicted by the contact angle, thereby, instead of diamond grit, the study on the wettability between the graphite and the brazing alloy has been indirectly executed. In this study, Cu-13Sn-12Ti filler alloy was manufactured, and the contact angles, the shear strengths and the interfacial area between the graphites (diamond grits) and braze matrix were investigated. The contact angle was decreased on increasing holding time and temperature. The results of shear strength of the graphite joints brazed filler alloys were observed that the joints applied Cu-13Sn-12Ti alloy at brazing temperature $940^{\circ}C$ was very sound condition indicating the shear tensile value of 23.8 MPa because of existing the widest carbide(TiC) reaction layers. The micrograph of wettability of the diamond grit brazed filler alloys were observed that the brazement applied Cu-13Sn-12Ti alloy at brazing temperature $990^{\circ}C$ was very sound condition because of existing a few TiC grains in the vicinity of the TiC layers.