• Title/Summary/Keyword: 브라켓 구조

Search Result 62, Processing Time 0.018 seconds

Load-carrying Capacity of Thermal Prestressed Steel Beam with Eccentric Bracket (편심 브라켓 설치 온도프리스트레싱 강재보의 하중저항 성능)

  • Kim, Sang-Hyo;Jung, Chi-Young;Choi, Kyu-Tae;Ahn, Jin-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2010
  • This study evaluates the load-carrying capacity of a thermal prestressed steel beam with an eccentric bracket. The steel beam that is proposed in this study has an eccentrically installed cover plate through application of the eccentric bracket. The eccentric bracket helps the steel beam achieve greater sectional stiffness and more efficiently induces prestress. A material non-linear characteristic applied finite element analysis was also conducted to check the validity of the experiments. The results of this study showed that the structural stiffness, yield load, and ultimate strength of the TPSM-applied steel beam with the eccentric bracket increased due to the eccentricity of the cover plate.

STRESS DISTRIBUTION IN ESTHETIC ORTHODONTIC BRACKETS : AN ANALYSIS USING THE FINITE ELEMENT METHOD (유한요소 분석을 통한 심미적 교정 브라켓의 응력 및 구조분석에 관한 연구)

  • Lee, Won-You;An, Ju-Sam;Park, Young-Cheol;Park, Myeong-Kyun;Sohn, Hong-Bum;Jeong, Si-Dong
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.43-49
    • /
    • 1998
  • The aim of this study were to measure and compare the stress level on three type brackets and each other material (stainless steel, ceramic) with tipping and torquing forces by using the finite element analysis and to design biomechanically favorable brackets. For this study, three kinds of brackets were selected(A:Transcend-RMO, B:Signature-Unitek, C:PAW: plain archwire appliance-applied for a patent in Yonsei Udiversity). The slot size of bracket was 0.022inch and the size of archwire was 0.0175x0.025inch and taper shaped archwire was used in PAW. Loading force in tipping was 4.27N and torquing force was 32.858N applied by archwire torsion with 19.7degree and 11.3 degree in C type bracket. The conclusions were that (1) The finite element method proved to be a useful tool in the stress analysis of orthodontic bracket subjected to various forces. (2) With tipping, the stresses were concentrated at the gingival wall of the wire slot where it meets the mesial bracket surface and the incisal wall of the wire slot where it meets the distal bracket surface and with torquing, the stresses were concentrated at the junction of the gingival or incisal wall and base of the slot. (3) The maximum stress value was higher in torquing force than tipping force and therefore it is desirable to design on the basis of torquing force. (4) It was considered that the change in material might be affect on the diminish of stress value in the place of stess concentration. (5) The maximum stress value was highest on PAW bracket when the tipping and torquing force was applied and therefore it would be desirable to use mechanically favorable material on PAW bracket.

  • PDF

Structural Performance and CO2 Reduction Evaluation of the Ultra simple Wide-shaped section Beam-to-Column Weak Axis Connection (초간편 H형강 기둥-보 약축접합부의 구조성능 및 CO2 저감량 평가)

  • Kim, Sang-Seup;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.615-627
    • /
    • 2011
  • There have been few researches on the connection technology for steel structures, so the research outputs and the outcome of the technology development are still insufficient. The bracket-type connection should be improved for efficient constructability and $CO_2$ reduction. It should be replaced by a new type of weak-axis connection that has better structural performance and less $CO_2$ emission. Since the structural performance and safety of the new type of weak-axis connection must first be verified, however, a study on $CO_2$ reduction will be conducted. Therefore, this study looked into the structural performance of the bracket-type details, standard details, and ultra-simple details. It evaluated the requirements for connection materials and $CO_2$ emission. It was found that the ultra-simple weak-axis connection has thebest structural performance and the least $CO_2$ emissions, so it is deemed capable of replacing the bracket-type weak-axis connection.

An Experimental Study on the Behavior of Beam-to-Column Joints for Modular Steel Frame (해체.조립식 모듈러 철골조 기둥-보 접합부의 거동에 관한 실험적 연구)

  • Zheng, Sheng-Lin;Kang, Joo-Won;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • The object of this paper is to evaluate on behavior the experimentally of beam-to-column joints for modular steel frame with the hollow structural steel section to LEB C-shape. Beam-to-column joints carried out test on the joint shape bracket-type and welded-type to consideration which the joints for modular steel frame was capacity, deformation and failure mode. Test of results, the beam-column joints decided to the lateral buckling strength in LEB C-shape regardless of joint-shape and joint failure. The strength & stiffness for joints increase as the bracket-thickness. The results from theory of lateral buckling are compared to the experimental results. The ratio of experimental results to theory value is $0.83{\sim}0.95$ in the case of bracket-type and welded-type of $0.87{\sim}0.9$, indicating an accurate and safe estimation.

  • PDF

Development of the Low Insertion force Grommet for Vechicle (차량용 저삽입력 그로멧 개발)

  • Cho, Ju-Cheol;Kim, Young-Gil;Seo, Hyroyuki;Song, Woo-Seung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.628-631
    • /
    • 2009
  • 본 논문에서는 당사인 경신공업(주)와 스미토모전장(주)와의 기술제휴를 통한 신제품 개발 프로젝트를 통하여 진행 한 연구 내용이다. 현재 자동차의 주요 부품 중 하나인 Dash-Grommet는 실외에서 실내부로 직부되는 부분으로 방수성이 주요한 성능이다. 이에 따라 현재 방수성 향상을 위해 볼팅으로 씰링을 하는 구조로서 브라켓트를 적용하고 있으며, 볼팅 툴 사용에 따른 홀 위치가 센터로 이동함에 따라 와이어 하네스 성형성을 위해 프로텍터를 적용하고 있다. 이와 관련하여 작업자의 툴 사용에 따른 산업재해(근골격계)요인 및 원가 상승의 원인이 되고 있다. 이에 본 연구에서는 그로멧 씰링구조를 최적화하여 브라켓트를 삭제시키고, 인간 공학적 구조 검토를 통한 저삽입력 구조의 Dash-Grommet 개발에 그 목적을 두었다. 그로멧 3중 씰링 구조를 이용하여 주요 성능인 방수(침수/살수) 성능에 대한 문제를 해결하였으며, 내부 파이프 구조를 이용하여 와이어를 통한 수분 유입에 대한 수밀 대책이 마련 되도록 하였다. 또한, 돌기부 구조를 이용하여 차량 장착시 판넬 접촉면을 최소화 함으로써 실제차량 장착 작업시 저삽입력을 가능하게 하였으며, 이와 더불어 홈부 구조를 이용하여 차량 장착시 그로멧의 수축을 용이하게 함으로써 새로운 그로멧 삽입 메커니즘을 구현하여 기존 대비 40~50%의 저 삽입력 그로멧을 개발할 수 있었다.

  • PDF

A Study on the Strength Optimized Design of Cushion Bracket on Power Sinking Seat Frame (파워 싱킹 시트 프레임 쿠션 브라켓 구조의 강도 최적화 설계 연구)

  • Jin Hee Heo;Yun Sik Yang;Yeong Jo Ju;Euy Sik Jeon
    • Industry Promotion Research
    • /
    • v.9 no.4
    • /
    • pp.93-103
    • /
    • 2024
  • With recent advancements in autonomous driving technology, vehicles are evolving beyond being simple means of transportation to become spaces for rest and work. As a result, the development of seat frames that maximize the use of interior space has been actively pursued. In particular, the electrification of containment sinking seats has emerged as a significant challenge, especially regarding the structural strength design of seat frame components as they transition from manual to automated systems. This study aims to convert the manual folding mechanism of the sinking seat frame into an automated mechanism using electric motors and to design the required component specifications and strength during the process. The main components for electrification were simplified, and, in particular, the design variables related to the placement angle and length of the electric motor applied to the cushion bracket were set at three levels, with subsequent 3D modeling conducted. The study results are as follows: Firstly, multi-body dynamic analysis showed that, compared to the standard configuration, an optimal motor arrangement angle can reduce motor force and torque by 30.25% and 6.7%, respectively. Secondly, strength analysis, considering the maximum allowable motor load and rear moment for each cushion bracket configuration, indicated that deformation and stress could be reduced by 13.76% and 34.95%, respectively, through the optimal angle and length. Finally, the optimal configuration of the cushion bracket, which aligns with the multi-body dynamic analysis results, was determined. This process is expected to provide a useful reference for future design strategies for automated seat frames.

Development of a Rigid-ended Beam Element and Its Application to Simplify 3-Dimensional Analysis of Bracketed Frame Structures (강체 단부 보요소의 개발 및 브라켓이 있는 골조 구조의 3차원 해석 단순화를 위한 적용)

  • Seo, Seung Il;Lim, Seong Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.76-84
    • /
    • 1997
  • At the initial design stage, for rapid evaluation of strength of ship structures, finite element analysis using beam elements is carried out in general. In beam modeling of ship structures, brackets are usually represented by rigid elements to simplify the analysis. Extent of rigid ends, which is called as a span point, can be determined from the three kinds of view points, i.e., bending, shearing and axial deformation. In this paper, a 2-dimensional novel beam element is developed and a method to replace the 3-dimensional analysis with 2-dimensional analysis is proposed. The developed novel beam element named rigid-ended beam element can consider the effect of three kinds of span points within one element, which was impossible in modeling with the ordinary beam element. Calculated results for the portal frame using the rigid-ended beam element agree with the results using membrane elements. And also, the proposed semi 3-dimensional analysis method which includes two step analysis using influence coefficients shows good accuracy. Structural analysis using the rigid-ended beam element and the semi 3-dimensional method is revealed to have good computing efficiency due to unnecessity of elements corresponding to the brackets and simplification of 3-dimensional analysis.

  • PDF

A Study on the Economy of Weak-Axis Beam-to-Column Connections (약축 보-기둥 접합부의 경제성에 관한 연구)

  • Park, Jong Won;Kang, Seoung Min;Oh, Yong Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.663-670
    • /
    • 2007
  • Column-tree beam-to-column joints are widely used in moment-resisting frames in Korea. In this study, we proposed four different arrangements for weak-axis moment-resisting beam-to-column connections, which are more economical than the conventional connection, while developing similar structural performance. We investigated the proposed connections whose connection details were different from the conventional one. The experiment was also conducted on a total of five beam-to-column joint specimensto verify the structural performance of the proposed connections. All four connections proposed in this study were found to be more economical that the conventional connection. Three out of four specimens with proposed details were able to developa structural performance similar to that of the specimen with the conventional detail.

On the Design of the Brackets without Flange in Ships' Structure (플랜지가 없는 선체 브라켓의 설계에 관한 연구)

  • Lee, Joo-Sung;Lee, Dong-Bu;Han, Doo-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.197-205
    • /
    • 2006
  • In general, brackets found at tank boundary are design according to the Classification Society Rule. Since much man power is needed in manufacturing the brackets stiffened by flange, it is necessary to suggest alternative designs, of which flanges are removed, through the rigorous structural analysis. In this paper non-linear structural analysis for brackets with and/or without flange have been carried out to examine their structural behavior and ultimate strengths. Alternative designs for brackets are suggested based on the results of ultimate strength analysis so that the alternative brackets have the similar level of strength and stiffness to the original brackets. It has been seen that the structural safety of alternative brackets proposed in this paper are beyond the appropriate level. The primary benefit of replacing the original brackets by the alternatives is the reduction of man power in manufacturing brackets and 10 to 15% weight saving can be expected in additional. This paper ends with some comments about the extension of the present study.

Elasto-Plastic Behavior of Steel Beams with High Strength Bolted Splices (고력볼트 접합이음 철골보의 탄소성거동)

  • Choi, Sung Mo;Kim, Jin Ho;Roh, Won Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.531-539
    • /
    • 2003
  • Unlike field-welded moment frames damaged during the Northridge earthquake, a column-tree moment frame has a tool to control and reduce its seismic behavior. The tool is the girder splice. Girder splices could be designed to be sufficiently ductile and to have a prescribed bending moment capacity. In such a design, during earthquakes, the girder splices would act as ductile "fuses" and limit the magnitude of forces including the bending moment that could be developed in the frame. In Korea, most moment frames arc composed of a column-tree moment frame. Therefore, the elasto-plastic behavior of steel beams with high strength bolted friction splice should be clarified. Furthermore, structural capacities, including energy absorption capacity, must be quantitatively found. This paper discusses an experimental study to clarify elasto-plastic behavior of steel beams with high strength bolted friction splices. A total of 5 specimens were tested. A specimen was fabricated to have a beam splice designed by a full strength method. Other specimens were fabricated to have beam splices with 75%, 50% and 0% capacities compared with the specimen.