• Title/Summary/Keyword: 붕괴확률

Search Result 98, Processing Time 0.026 seconds

Visualization Technology of GIS Associated with Seismic Fragility Analysis of Buried Pipelines in the Domestic Urban Area (국내 도심지 매설가스배관의 지진취약도 분석 연계 GIS 정보 가시화 기술)

  • Lee, Jinhyuk;Cha, Kyunghwa;Song, Sangguen;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • City-based Lifeline is expected to cause significant social and economic loss accompanied the secondary damage such as paralysis of urban functions and a large fire as well as the collapse caused by earthquake. Earthquake Disaster Response System of Korea is being operated with preparation, calculates the probability of failure of the facility through Seismic Fragility Model and evaluates the degree of earthquake disaster. In this paper, the time history analysis of buried gas pipeline in city-based lifeline was performed with consideration for ground characteristics and also seismic fragility model was developed by maximum likelihood estimation method. Analysis model was selected as the high-pressure pipe and the normal-pressure pipe buried in the city of Seoul, Korea's representative, modeling of soil was used for Winkler foundation model. Also, method to apply developed fragility model at GIS is presented.

Stability Analysis of Embankment Overtopping by Initial Fluctuating Water Level (초기 변동수위를 고려한 제방 월류에 따른 안정성 분석)

  • Kim, Jin-Young;Kim, Tae-Heon;Kim, You-Seong;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.51-62
    • /
    • 2015
  • It is not possible to provide resonable evidence for embankment (or dam) overtopping in geotechnical engineering, and conventional analysis by hydrologic design has not provided the evidence for the overflow. However, hydrologic design analysis using Copula function demonstrates the possibility that dam overflow occurs when estimating rainfall probability with rainfall data for 40 years based on fluctuating water level of a dam. Hydrologic dam risk analysis depends on complex hydrologic analyses in that probabilistic relationship needs to be established to quantify various uncertainties associated with modeling process and inputs. The systematic approaches to uncertainty analysis for hydrologic risk analysis have not been addressed yet. In this paper, the initial level of a dam for stability of a dam is generally determined by normal pool level or limiting the level of the flood, but overflow of probability and instability of a dam depend on the sensitivity analysis of the initial level of a dam. In order to estimate the initial level, Copula function and HEC-5 rainfall-runoff model are used to estimate posterior distributions of the model parameters. For geotechnical engineering, slope stability analysis was performed to investigate the difference between rapid drawdown and overtopping of a dam. As a result, the slope instability in overtopping of a dam was more dangerous than that of rapid drawdown condition.

Estimating Geotechnical System Response Probability of Internal Erosion Risk in Fill Dam using Event Tree Analysis (사건수 분석 기법을 이용한 필댐의 내부 침식 위험도에 대한 지반공학적 시스템 응답 확률 산정)

  • Noh, Kyung-Lyun;Lim, Jeong-Yeul;Mok, Young-Jin;Jung, Young-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1815-1829
    • /
    • 2014
  • Recently frequent collapse of old fill dams has taken place, which increases social awareness in the safety of the infrastructure. Fill dams in Korea has been incautiously regarded as safe once the fill dam is considered to have a full capacity to retain a conservative design flood determined by government authorities. However, developed foreign countries has been managing their fill dams by introducing systematic risk assessment techniques over a long period of time. In this study, the system response probabilities of the deteriorated old fill dams in Korea were systematically evaluated and analyzed by using the internal erosion toolbox based on the event tree analysis technique. The probability of the existence of flaw and the magnitude of the hydraulic gradient through a potential crack can significantly influence the geotechnical system response probability. The results of this study show that the probability of the existence of flaw and the magnitude of the hydraulic gradient through a potential crack can significantly influence the geotechnical system response probability and the risk of the deteriorated fill dam can be quantitatively assessed.

Prediction of Loss of Life in Downstream due to Dam Break Flood (댐 붕괴 홍수로 인한 하류부 인명피해 예측)

  • Lee, Jae Young;Lee, Jong Seok;Kim, Ki Young
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.879-889
    • /
    • 2014
  • In this study, to estimate loss of life considered flood characteristics using the relationship derived from analysis of historical dam break cases and the factors determining loss of life, the loss of life module applying in LIFESim and loss of life estimation by means of a mortality function were suggested and applicability for domestic dam watershed was examined. The flood characteristics, such as water depth, flow velocity and arrival time were simulated by FLDWAV model and flood risk area were predicted by using inundation depth. Based on this, the effects of warning, evacuation and shelter were considered to estimate the number of people exposed to the flood. In order to estimate fatality rates based on the exposed population, flood hazard zone is assigned to three different zones. Then, total fatality numbers were predicted after determining lethality or mortality function for each zone. In the future, the prediction of loss of life due to dam break floods will quantitatively evaluate flood risk and employ to establish flood mitigation measures at downstream applying probabilistic flood scenarios.

A Study on Selection of Optimal Shelters according to Dam Break Scenario Based on Continuous Rainfall Event (연속호우사상기반의 댐 붕괴 시나리오에 따른 최적대피소 선정에 관한 연구)

  • Kim, Kyunghun;Lim, Jonghun;Kim, Hung Soo;Shin, Soeng Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.433-447
    • /
    • 2023
  • There is a growing demand for the stability of existing dams due to abnormal climate and the aging of dams. Emergency Action Plans (EAPs) for reservoir or dam failure only consider a single rainfall event. Therefore, this study simulates dam failure caused by continuous rainfall events, and proposes the establishment of EAP by selecting the optimal shelters. We define a mega rainfall event scenario caused by continuous rainfall events with 500-year frequency in the Chungju Dam watershed and estimate the mega flood. The mega flood event scenario is divided into two cases: scenario A represents the flooding case caused by discharge release from a dam, while scenario B is the case of a dam break. As a result of flood inundation analysis, the flooded damage area by the scenario A is 50.06 km2 and the area by the scenario B is 6.1 times of scenario A (307.45 km2). We select optimal shelters for each administrative region in the city of Chungju, which has the highest inundation rate in the urban area. Seven shelter evaluation indicators from domestic and foreign shelter selection criteria are chosen, and Analytical Hierarchy Process (AHP) method is used to evaluate the alternatives. As a result of the optimal shelter selection, the six shelters are selected and five are schools. This study considers continuous rainfall events for inundation analysis and selection of optimal shelters. Also, the results of this study could be used as a reference for establishment of the EAP.

Study on the Free Surface Behavior Using the Lattice Boltzmann Method (격자볼츠만법을 이용한 자유수면 거동 특성 연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • The boltzmann equation is based on the particle distribution function while the Navire-Stokes equation based on the continuum theory. In order to simulate free surface flow, this paper used the Lattice Boltzmann Method of which is the discretized form. The detail study on the characteristics of the Lattice Boltzmann Method for the free surface simulation was investigated. The developed code was validated with the traditional dam breaking problem by tracking the front position of the water. A basic roles of density functions in the Lattice Boltzmann Method is discussed. To have an engineering applications, the simulation is also conducted the free surface behavior with an arbitrary wall geometry.

Application of Uncertainty Method fer Analyzing Flood Inundation in a River (하천 홍수범람모의를 위한 불확실도 해석기법의 적용)

  • Kim, Jong-Hae;Han, Kun-Yeun;Seo, Kyu-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.661-671
    • /
    • 2003
  • The reliability model is developed for analyzing parameter uncertainty and estimating of flood inundation characteristics in a protected lowland. The approach is based on the concept of levee safety factor and the statistical analysis of model parameters affecting the variability of flood levels. Monte Carlo simulation is incorporated into the varied flow and unsteady flow analysis to quantify the impact of parameter uncertainty on the variability of flood levels. The model is applied to a main stem of the Nakdong River from Hyunpoong to Juckpogyo station. Simulation results show that the characteristics of channel overflow and return now are well simulated and the mass conservation was satisfied. The inundation depth and area are estimated by taking into consideration of the uncertainty of width and duration time of levee failure.

A Development of Hydrologic Risk Analysis Model for Small Reservoirs Based on Bayesian Network (Bayesian Network 기반 소규모 저수지의 수문학적 위험도 분석 모형 개발)

  • Kim, Jin-Guk;Kim, Jin-Young;Gwon, Hyeon-Han;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.105-105
    • /
    • 2017
  • 최근 우리나라에서는 국지성호우로 인해 발생하는 돌발홍수에 방어하지 못하는 소규모 저수지에 대한 붕괴사고가 빈발하고 있다. 붕괴된 저수지를 살펴보면, 대체적으로 규모가 작아 체계적인 안전관리가 이루어지지 않거나 경과연수가 50년 이상인 필댐(fill dam) 형식으로 축조된 노후저수지로서 갑작스러운 홍수를 대응하는데 있어 매우 취약한 상태이다. 체계적으로 운영되는 대형댐에 비해 축조기간이 오래된 소규모 저수지의 경우, 저수지에 대한 수문학적 정보가 거의 없거나 미계측되어 보수보강이 필요한 저수지를 선정하거나 정량적인 위험도를 분석하는데 매우 어려운 실정이다. 이러한 이유로 본 연구에서는 노후된 소규모 저수지에 대한 수문학적 파괴인자들을 선정하여 Bayesian Network기반의 소규모 저수지 위험도 분석 모형을 구축하였다. 구축된 모형을 기준으로 고려될 수 있는 다양한 위험인자 및 이들 인자간의 연관성을 평가하였으며, 각각의 노드에 파괴인자를 노드로 할당하여 소규모 저수지의 위험도를 분석하였다. Bayesian Network기법의 도입으로 불확실한 상황을 확률로 표시하고, 복잡한 추론을 정량화된 노드의 관계로 단순화시켜 노드의 연결 관계로 표현하였다. 본 연구에서 제안된 모형은 노후된 소규모 저수지의 수문학적 위험도를 정량으로 분석하는 모형으로서 활용성이 높을 것으로 기대된다.

  • PDF

Seismic Performance Assessment of Unreinforced Masonry Wall Buildings Using Incremental Dynamic Analysis (증분동적해석을 통한 비보강 조적벽식 건물의 내진성능 평가)

  • Kwon, Ki Hyuk;Kim, Man Hoe;Kim, Hyung Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.28-39
    • /
    • 2013
  • The most common housing type in Korea is low-rise buildings with unreinforced masonry walls (UMWs) that have been known as a vulnerable seismic-force-resisting system (SFRS) due to the lack of ductility capacities compared to high lateral stiffness of an UMW. However, there are still a little experimental investigation on the shear strength and stiffness of UMWs and on the seismic performance of buildings using UMWs as a SFRS. In Korea, the shear strength and stiffness of UMWs have been evaluated with the equations suggested in FEMA 356 which can not reflect the structural and material characteristics, and workmanship of domestic UMW construction. First of all, this study demonstrates the differences in shear strength and stiffness of UMWs obtained from between FEMA 356 and test results. The influence of these differences on the seismic performance of UMW buildings is then discussed with incremental dynamic analyses results of a prototype UMW building that were selected by the site survey of more than 200 UMW buildings and existing test results of UMWs. The seismic performance assessment of the prototype UMW building are analyzed based on collapse margin ratios and beta values repesenting uncertainty of seismic capacity. Analysis results show that the seismic performance of the UMW building estimated using the equations in FEMA 356 underestimates both a collapse margin ratio and a beta value compared to that estimated by test results. Whatever the estimation is carried out two cases, the seismic performance of the prototype building does not meet the criteria prescribed in a current Korean seismic code and about 90% collapse probability presents for more than 30-year-old UMW buildings under earthquakes with 2400 return years.

Seismic Fragility Evaluation of Chimney Structure in Power Plant by Finite Element Analysis (유한요소 해석을 통한 발전소 연돌 구조물의 지진취약도 분석)

  • Kwon, Gyu-Bin;Kim, Jin-Sup;Kwon, Min-Ho;Park, Kwan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.276-284
    • /
    • 2019
  • Seismic research on bridges, dams and nuclear power plants, which are infrastructure in Korea, has been carried out since early on, but in the case of structures in thermal power plants, research is insufficient. In this study, a total of 192 dynamic analyzes were performed for 16 actual seismic waves and 12 PGAs. As a result, the probability of failure increased as the PGA value increased for each applied seismic wave, but it was different for each seismic wave. As a result, at 0.22G, the ratio of the compressive limit reached to the limit state was 25% and the ratio of the relative displacement reached the limit state was 13%. So, the probability of collapse due to compressive failure Is higher. Therefore, the fragility curve of the chimney which is the subject of this study can be used as a quantitative basis to determine the limit state of the target structure when an earthquake occurs and to be used for the safety design of the thermal power plants.