• 제목/요약/키워드: 붕괴실험

검색결과 585건 처리시간 0.027초

Evaluation of Performance of Expansive Material for Restoration of Underground Cavity and Stress Release Zone (지하공동 및 이완영역 복구를 위한 팽창성 재료의 성능 평가)

  • Lee, Kicheol;Choi, Byeong-Hyun;Bak, Jongho;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • 제17권4호
    • /
    • pp.141-155
    • /
    • 2018
  • Recently, the number of ground subsidence resulting from underground cavity has been increased. Accordingly, the importance of restoration of stress release zone around the underground cavity has been emphasized. The stress release zone is composed of low density soils having extremely low stiffness and degree of compaction, which can lead to additional cavity expansion and collapse of overlying ground. Therefore, in this study, the suitability of restoration method of underground cavity using expansive material for reinforcement of stress release zone around the cavity is verified. The basic physical properties and expansion characteristics of the expansive material were examined. The experiment equipment capable simulating of stress release zone was developed and is used to investigate the effect of expanding material on stress release zone. The stress release zone was simulated using the spring in numerical analysis. The factors of the volume ratio of the underground cavity to the expansion material, the degree of stress relaxation, and the shape of the cavity were varied in numerical simulations, and the behavior of stress release zone was analyzed based on the numerical analysis results. Analysis variables are factors that affect each other. Also, filling of underground cavity and capacity of restoration of stress release zone were confirmed when the expansive material was inserted into underground cavity.

A Review on Measurement Techniques and Constitutive Models of Suction in Unsaturated Bentonite Buffer (불포화 벤토나이트 완충재의 수분흡입력 측정기술 및 구성모델 고찰)

  • Lee, Jae Owan;Yoon, Seok;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제17권3호
    • /
    • pp.329-338
    • /
    • 2019
  • Suction of unsaturated bentonite buffers is a very important input parameter for hydro-mechanical performance assessment and design of an engineered barrier system. This study analyzed suction measurement techniques and constitutive models of unsaturated porous media reported in the literature, and suggested suction measurement techniques and constitutive models suitable for bentonite buffer in an HLW repository. The literature review showed the suction of bentonite buffer to be much higher than that of soil, as measured by total suction including matric suction and osmotic suction. The measurement methods (RH-Cell, RH-Cell/Sensor) using a relative humidity sensor were suitable for suction measurement of the bentonite buffer; the RH-Cell /Sensor method was more preferred in consideration of the temperature change due to radioactive decay heat and measurement time. Various water retention models of bentonite buffers have been proposed through experiments, but the van Genuchten model is mainly used as a constitutive model of hydro-mechanical performance assessment of unsaturated buffers. The water characteristic curve of bentonite buffers showed different tendencies according to bentonite type, dry density, temperature, salinity, sample state and hysteresis. Selection of water retention models and determination of model input parameters should consider the effects of these controlling factors so as to improve overall reliability.

A Study on the Evaluation of Expanded Metal Characteristics for Application Rockfall Facilities (낙석방지시설 적용을 위한 팽창메탈의 특성 연구)

  • Lee, Jong-In;Jung, Chun-Gyo;Kim, Sung-Ho;Hwang, Yeong-Cheol;Lee, Seung-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • 제12권9호
    • /
    • pp.13-20
    • /
    • 2011
  • There are many mountains in Korean Peninsula, and those used for the construction of roads and railways sectors are forming slopes. Slope collapse occurs with falling rocks and landslide because of the relaxation of the thawing rocks. The heavy rain in summer can also significantly contribute to the process, and abnormal climate change is much more influential than before. Therefore, rockfall-related accidents in rainy season are easily accessible in media every year. There has been a lot of research on application of strengthening compensation of the sections in order to minimize casualties and property damage. Rockfall Protection Net, however, has not been focused on much in the field yet. This study highlights the need of Rockfall Protection Net, since it can segregate the falling rocks inside the net relatively safely. Although there has been a little doubt about the effectiveness of rockfall protection facilities, it is obvious that relevant studies dealing with the solidity of the net are necessary for the rockfall protection net to be capable of supporting rockfall energies. As a result, Expanded metal strength is much more durable compared to the PVC coating net, and it is regarded as an excellent alternative material for the Rockfall Protection Net. In this study, the applicability of Expanded Metal as the alternative of Rockfall Protection Net is verified experimentally.

Effect of Halophyte (Spartina anglica and Calystegia soldanella) Extracts on Skin Moisturizing and Barrier Function in HaCaT Cells (염생식물인 갯끈풀과 갯메꽃 추출물의 HaCaT 세포에서 피부 보습 및 피부 장벽 기능에 미치는 영향)

  • Ha, Yuna;Jeong, JaeWoo;Lee, Won Hwi;Oh, Jun Hyuk;Kim, Youn-Jung
    • Journal of Marine Life Science
    • /
    • 제6권2호
    • /
    • pp.58-65
    • /
    • 2021
  • As aging progresses, reactive oxygen species (ROS) reduces skin moisturization and collapses skin barrier function. In this study, we evaluated the efficacy of skin moisturizing and skin barrier function enhancement by extracts from halophytes using HaCaT cells. Spartina anglica (S. anglica; SAE) and Calystegia soldanella (C. soldanella; CSE), a kind of halophytes, were collected from Dongmak beach in Incheon, and extracted with 70% ethanol. At the first, we evaluated the cytotoxicity of extracts in HaCaT cell using WST-8 Kit. As a result, the other experiment was conducted by setting the concentration at which the cell viability was 90% or more. SAE and CSE showed high radical scavenging activity through ABTS assay. Expression levels of genes related to skin moisturizing and skin barrier functions, were analyzed by real-time qPCR. As a result, it showed that the expression of aquaporin 3, hyaluronan synthase 2, and transglutaminase 1 was increased by SAE treatment but not changed by CSE. Activation of extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen activated protein kinase was induced by SAE. These results suggest that SAE can be used as functional materials for cosmetics for skin moisturizing and barrier function enhancement.

Experimental Study of Fire Characteristics by Isocyanate Functional Parameter (이소시아네이트 관능기 매개인자에 의한 화재 특성의 실험적 연구)

  • Lee, Jae-Geol;Han, Kyoung-Ho;Jo, Hyung-Won;Yoon, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • 제26권3호
    • /
    • pp.27-37
    • /
    • 2022
  • With the recent increase in the spread of ESS (Electric Storage System), the damage to human life and property is also rapidly increasing due to continuous fires caused by ESS. In the manufacture of urethane sandwich panels used in ESS, it is necessary to improve the flame retardant performance. In this study, in order to realize the flame retardant properties of flexible polyurethane foam, the effect of the tissue density of the product due to the change of the isocyanate functional group parameter that changes the physical properties of the product on the fire performance was studied. The product was manufactured by changing the density of the urethane structure, and combustion performance tests, gas toxicity tests, and smoke density tests were performed. As a result, it was confirmed that the total amount of heat released had excellent performance when the isocyanate functional group was high, and had no correlation with the maximum heat release rate. When the value of the isocyanate functional group was 2.7 or more, the collapse of the shape could be prevented. In the gas hazard test, the performance was increased when the isocyanate functional group was relatively high, so a flame retardant for the Char system, which had a dense structure and easy to form a carbonized film, was added. confirmed to be. Therefore, as a result of this study, it is thought that it will be possible to lay the foundation for the development of a flame retardant to replace the cheap urethane sandwich panel used in the past.

Experimental Evaluation of the Effect of Fine Contents on the Formation of Underground Cavities and Ground Cave-ins by Damaged Sewer Pipes (하수관 손상으로 인한 지하공동 및 지반함몰 발생에 대해 세립분 함량이 미치는 영향의 실험적 평가)

  • Kwak, Tae-Young;Lee, Seung-Hwan;Chung, Choong-Ki;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • 제37권11호
    • /
    • pp.93-105
    • /
    • 2021
  • In this study, we evaluated the effect of soil fine contents on the formation of underground cavities and ground cave-ins induced by damaged sewer pipes. Simulating the domestic rainfall conditions and ground conditions, model tests were performed under three different fine particle contents conditions (7.5%, 15%, and 25%). By repeating the groundwater supply and drainage twice, ground settlement and the amount of discharged soil were obtained. Also, digital images were taken at regular time intervals during the model tests, and internal displacement and deformation were measured using PIV technique. As the cycles were repeated, the soil with high fine content showed greater resistance to the formation of underground cavities. The ground cave-ins, identified by the collapse of the surface, occurred only when the fine particle content was 15%. It is presumed to be due to the suffusion phenomenon; further study was needed to investigate the effect of fine particle contents on the suffusion phenomenon and associated changes of soil strength.

Damage Evaluation of Adjacent Structures for Detonation of Hydrogen Storage Facilities (수소저장시설의 폭발에 대한 인접 구조물의 손상도 평가)

  • Jinwon Shin
    • Journal of Korean Society of Disaster and Security
    • /
    • 제16권1호
    • /
    • pp.61-70
    • /
    • 2023
  • This study presents an analytical study of investigating the effect of shock waves generated by the hydrogen detonation and damage to structures for the safety evaluation of hydrogen storage facilities against detonation. Blast scenarios were established considering the volume of the hydrogen storage facility of 10 L to 50,000 L, states of charge (SOC) of 50% and 100%, and initial pressures of 50 MPa and 100 MPa. The equivalent TNT weight for hydrgen detonation was determined considering the mechanical and chemical energies of hydrogen. A hydrogen detonation model for the converted equivalent TNT weight was made using design equations that improved the Kingery-Bulmash design chart of UFC 3-340-02. The hydrogen detonation model was validated for overpressure and impulse in comparison to the past experimental results associated with the detonation of hydrogen tank. A parametric study based on the blast scenarios was performed using the validated hydrogen detonation model, and design charts for overpressure and impulse according to the standoff distance from the center of charge was provided. Further, design charts of the three-stage structural damage and standoff distance of adjacent structures according to the level of overpressure and impact were proposed using the overpressure and impulse charts and pressure-impulse diagrams.

Monitoring of residue PBDEs level in human milk and fish & shellfish samples collected from Korea (한국인 모유 및 어패류 중 PBDEs 잔류 레벨 모니터링)

  • Jang, Myungsu;Cha, Sujin;Kang, Younseok;Park, Jongsei
    • Analytical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.244-254
    • /
    • 2006
  • Flame retardants are added to prevent catching fire and to slow down the burning process. PBDEs are known to affect thyroid hormones and hormone disruption. The aim of this study was to propose a manual for determination of PBDEs, and investigate the accumulation of PBDEs(BDE-28, 47, 99, 100, 153, 154 and 183) in fish&shellfish and human milk samples. Pre-treatment for PBDEs determination, alkali digestion and L-L(Liquid-Liquid) extraction method could be applied to fish and shellfish. When Multi-layer column was used for cleaning up the sample, 50 mL of hexane and 100 mL of hexane:dichloromethane(9:1) solutions were used for pre- and post-elution, respectively. Activated-carbon column was optimized by a 100 mL of hexane:dichloromethane(3:1). The result of fish, highest concentration was detected in flatfish, 890 pg/g(wet weight). The other side, lowest concentration was detected in pollack, 40 pg/g(wet weight). The result of breast milk, PBDEs was detected 2,580 and 3,600 pg/g(lipid weight) from breast milk of Seoul and Juju, respectively. BDE-153 and 183 were not detected in all samples. There was no difference in PBDEs level was not difference between first and second delivery. In this study, we could find that PBDEs level in Korea is lower than other countries.

Evaluating the Influence of Post-Earthquake Rainfall on Landslide Susceptibility through Soil Physical Properties Changes (지진이후 강우의 산사태 발생 영향성 평가를 위한 토양물성값 변화 분석)

  • Junpyo Seo;Song Eu;KiHwan Lee;Giha Lee;Sewook Oh
    • Journal of the Society of Disaster Information
    • /
    • 제20권2호
    • /
    • pp.270-283
    • /
    • 2024
  • Purpose: Considering the rising frequency of earthquakes in Korea, it is crucial to revise the rainfall thresholds for landslide triggering following earthquake events. This study was conducted to provide scientific justification and preliminary data for adjusting rainfall thresholds for landslide early warnings after earthquakes through soil physical experiments. Method: The study analyzed the change in soil shear strength by direct shear tests on disturbed and undisturbed samples collected from cut slopes. Also, The study analyzed the soil strength parameters of remolded soil samples subjected to drying and wetting conditions, focusing on the relationship between the degree of saturation after submergence and the strength parameters. Result: Compaction water content variation in direct shear tests showed that higher water content and saturation in disturbed samples led to a significant decrease in cohesion (over 50%) and a reduction in shear resistance angle (1~2°). Additionally, during the ring shear tests, the shear strength was observed to gradually decrease once water was supplied to the shear plane. The maximum shear strength decreased by approximately 65-75%, while the residual shear strength decreased by approximately 53-60%. Conclusion: Seismic activity amplifies landslide risk during subsequent rainfall, necessitating proactive mitigation strategies in earthquake-prone areas. This research is anticipated to provide scientific justification and preliminary data for reducing the rainfall threshold for landslide initiation in earthquake-susceptible regions.

Distribution Behavior of Natural Radionuclide Pb in Molten Fe to Metal/Slag/Gas Phase (용융 Fe 중 천연방사성핵종 Pb의 금속/슬래그/가스상으로의 분배거동)

  • So-Yeong Lee;Hyeon-Soo Kim;Jong-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • 제33권2호
    • /
    • pp.54-61
    • /
    • 2024
  • When steel contaminated with Pb, produced by the decay of natural radionuclides, is remelted, Pb distributes among the metal, slag, and gas phases. In this study, 5 wt%Pb was added to Fe and melted with CaO-SiO2-Al2O3-MgO slag to investigate Pb's distribution in the metal/slag/gas. As slag basicity ((wt%CaO)/(wt%SiO2)) increased, Pb solubility in Fe slightly increased, while Pb in the slag tended to decrease. Consequently, the slag/metal distribution ratio of Pb decreased with increasing basicity. Thermodynamic calculations revealed that the slag/Fe phase distribution ratio of Pb remained very low irrespective of the activity coefficient of PbO in the slag, consistent with the experimental results. The calculated evaporation rate of Pb in Fe-Pb was approximately 22 times that of Fe; hence, most of the Pb evaporated into the gas phase.