• Title/Summary/Keyword: 불연속 갤러킨 기법

Search Result 17, Processing Time 0.022 seconds

Application of Implicit Discontinuous Galerkin Method to Step-Type Discontinuous Bathymetry (계단형 불연속 지형에 대한 불연속 갤러킨 음해법의 적용)

  • Lee, Haegyun;Lee, Namjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.253-253
    • /
    • 2021
  • 천수방정식에 대한 불연속 갤러킨 기법 (DG) 모형은 주로 양해법 기반으로 개발되어 적용되어 왔으나, 바닥마찰항의 처리, 과도한 CFL 조건 등의 불리한 점이 지적되어 왔으며, 이로 인하여 실제 적용에서 FDM, FEM 등 다른 고전적인 수치기법과 비교하여 경쟁력을 갖기 어려웠다. 이에 대한 대안으로써, 최근, 불연속 갤러킨 기법에 대한 음해법 기반의 모형이 연구되고 있으며, 다소 복잡한 알고리즘에도 불구하고 적용이 확대되고 있다. 또한, 널리 알려진 바와 같이, 천수방정식의 실제 하도에 대한 적용에 있어 문제점 중 하나는 나비에-스토크스 방정식으로부터 유도할 때 사용된 정수압 가정으로 인하여, 하도의 계단과 같은 불연속 지형에 적용이 용이하지 않다는 것이다. 본 연구에서는 기존에 개발된 불연속 갤러킨 음해법에 불연속 지형의 해석을 위한 표면경사법(surface gradient method)을 결합하여 이러한 문제에 효과적으로 대응할 수 있는 기법을 제시하였다. 개발된 모형의 검증을 위하여, 제방 등 하도 구조물 위의 장주기 조석흐름, 홍수파, 계단 등을 포함하는 댐 붕괴류 모의에 적용하고 실용적인 기능성을 검증하였다. 향후 구조물이 많은 국내 하천에 적용이 가능할 것으로 사료된다.

  • PDF

Application of Discontinuous Galerkin Method to Shallow Water Equations (천수방정식에 대한 불연속 갤러킨 유한요소법의 적용)

  • Lee, Haegyun;Lee, Nam-Joo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.443-444
    • /
    • 2013
  • 빈발하고 있는 대규모 홍수와 자연재해는 정확도가 높은 하천 흐름 수치해석 모델에 대한 관심의 증대로 이어지고 있다. 현재 하천에서 발생하는 일반적인 흐름은 기존에 개발된 여러 형태의 천수방정식을 지배방정식으로 하는 수치기법에 의해 해석되고 있으나, 연속적이지 않은 형태의 흐름을 해석하거나 매우 정확한 해석을 필요로 하는 경우에는 기존의 수치해석기법은 많은 한계를 보여 주고 있다. 본 연구에서는 불연속 갤러킨 기법 기반의 흐름 모델을 개발하고, 이를 이용하여 천이류로 분류되는, 댐 붕괴파, 둔덕위 흐름과 2차원 사류의 모의에 적용하여 기존의 수치해와 잘 일치함을 확인하였다.

  • PDF

Application of DGFEM to 1D Boussinesq Equation (일차원 Boussinesq 방정식에 대한 불연속 갤러킨 기법의 적용)

  • Lee, Haegyun;Lee, Namjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.470-474
    • /
    • 2016
  • Madsen et al. (2002)이 제안한 일차원 고차 Boussinesq 방정식에 대하여 불연속갤러킨 유한요소법(Discontinuous Galerkin Finite Element Method)을 적용하였다. 연속적인 Boussinesq 방정식에서 각 요소경계에 불연속을 허용할 수 있도록 공간차분하고, 시간방향으로 4차 Runge-Kutta 시간적분법, 각 요소사이에는 Lax-Friedrichs 수치흐름률을 사용하였다. 계산영역의 양쪽에 불필요한 파랑의 반사를 억제하도록 흡수층을 설치하였으며, 영역 내부에서 조파할 수 있도록 하였다. Luth et al.(1994)의 수중잠제 실험에 적용하여 관측값과 잘 일치함을 확인하였다.

  • PDF

Simulation of One-Dimensional Transcritical Flow with Discontinuous Galerkin Finite Element Method (불연속 갤러킨 유한요소법을 이용한 1차원 천이류 모의)

  • Lee, Haegyun;Lee, Nam-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.428-434
    • /
    • 2013
  • With the increase of the frequency in large-scale floods and natural disasters, the demands for highly accurate numerical river models are also rapidly growing. Generally, flows in rivers are modeled with previously developed and well-established numerical models based on shallow water equations. However, the so-far-developed models reveal a lot of limitations in the analysis of discontinuous flow or flow which needs accurate modeling. In this study, the numerical shallow water model based on the discontinuous Galerkin method was applied to the simulation of one-dimensional transcritical flow, including dam break flows and a flow over a hump. The favorable agreement was observed between numerical solutions and analytical solutions.

A COMPARATIVE STUDY BETWEEN DISCONTINUOUS GALERKIN AND SPECTRAL VOLUME METHODS ON STRUCTURED GRIDS (2차원 정렬 격자계에서의 불연속 갤러킨 기법과 Spectral Volume 기법 비교 연구)

  • Koo H. S.;Kim K. H.;Kim C. A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.131-134
    • /
    • 2005
  • Conventional high order interpolation schemes are limitative in several aspects mainly because they need data of neighboring cells at the reconstruction step. However, discontinuous Galerkin method and spectral volume method, two high order flux schemes which will be analyzed and compared in this paper, have an important benefit that they are not necessary to determine the flow gradients from data of neighboring cells or elements. These two schemes construct polynomial of variables within a cell so that even near wall or discontinuity, the high order does not deteriorate.

  • PDF

DEVELOPMENT OF AN HIGH-ORDER IMPLICIT DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 고차 정확도의 내재적 불연속 갤러킨 기법의 개발)

  • Lee, H.D.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.29-40
    • /
    • 2007
  • An implicit discontinuous Galerkin method for the two-dimensional Euler equations was developed on unstructured triangular meshes. The method can achieve high-order spatial accuracy by using hierachical basis functions based on Legendre polynomials. Numerical tests were conducted to estimate the convergence order of numerical solutions to the Ringleb flow and the supersonic vortex flow for which analytic solutions are available. Also, the flows around a 2-D circular cylinder and an NACA0012 airfoil were numerically simulated. The numerical results showed that the implicit discontinuous Galerkin methods couples with a high-order representation of curved solid boundaries can be an efficient method to obtain very accurate numerical solutions on unstructured meshes.

DEVELOPMENT OF A HIGH-ORDER IMPLICIT DISCONTINUOUS GALERKIN METHOD FOR SOLVING COMPRESSIBLE NAVIER-STOKES EQUATIONS (압축성 Navier-Stokes 방정식 해를 위한 고차 정확도 내재적 불연속 갤러킨 기법의 개발)

  • Choi, J.H.;Lee, H.D.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.72-83
    • /
    • 2011
  • A high-order discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations was developed on unstructured triangular meshes. For this purpose, the BR2 methd(the second Bassi and Rebay discretization) was adopted for space discretization and an implicit Euler backward method was used for time integration. Numerical tests were conducted to estimate the convergence order of the numerical solutions of the Poiseuille flow for which analytic solutions are available for comparison. Also, the flows around a flat plate, a 2-D circular cylinder, and an NACA0012 airfoil were numerically simulated. The numerical results showed that the present implicit discontinuous Galerkin method is an efficient method to obtain very accurate numerical solutions of the compressible Navier-Stokes equations on unstructured meshes.

DEVELOPMENT OF HIGH-ORDER ADAPTIVE DISCONTINUOUS GALERKIN METHOD FOR UNSTEADY FLOW SIMULATION (비정상 유동 해석을 위한 고차정확도 격자 적응 불연속 갤러킨 기법 개발)

  • Lee, H.D.;Choi, J.H.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.534-541
    • /
    • 2010
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin method has been developed for the numerical simulation of unsteady flows on unstructured meshes. A multi-level solution-adaptive mesh refinement/coarsening technique was adopted to enhance the resolution of numerical solutions efficiently by increasing mesh density in the high-gradient region. An acoustic wave scattering problem was investigated to assess the accuracy of the present discontinuous Galerkin solver, and a supersonic flow in a wind tunnel with a forward facing step was simulated by using the adaptive mesh refinement technique. It was shown that the present discontinuous Galerkin flow solver can capture unsteady flows including the propagation and scattering of the acoustic waves as well as the strong shock waves.

  • PDF

HIGH-ORDER ACCURATE SIMULATIONS OF BLADE-VORTEX INTERACTION USING A DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 고차정확도 불연속 갤러킨 기법을 이용한 블레이드-와류 간섭 현상 모사)

  • Lee, H.D.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.57-70
    • /
    • 2008
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin finite-element method has been developed for the numerical simulations of blade-vortex interaction phenomena on unstructured meshes. A free vortex in freestream was investigated to assess the vortex-preserving property and the accuracy of the present flow solver. Blade-vortex interaction problems in subsonic and transonic freestreams were simulated by adopting a multi-level solution-adaptive dynamic mesh refinement/coarsening technique. The results were compared with those of other numerical and experimental methods. It was shown that the present discontinuous Galerkin flow solver can preserve the vortex structure for significantly longer vortex convection time and can accurately capture the complex unsteady blade-vortex interaction flows, including generation and propagation of acoustic waves.

  • PDF

HIGH-ORDER ACCURATE SIMULATIONS OF BLADE-VORTEX INTERACTION USING A DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 고차정확도 불연속 갤러킨 기법을 이용한 블레이드-와류 간섭 현상 모사)

  • Lee, H.D.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.57-70
    • /
    • 2008
  • A high-order accurate Euler flow solver based on a discontinuous Galerkin finite-element method has been developed for the numerical simulations of blade-vortex interaction phenomena on unstructured meshes. A free vortex in freestream was investigated to assess the vortex-preserving property and the accuracy of the present flow solver. Blade-vortex interaction problems in subsonic and transonic freestreams were simulated by adopting a multi-level solution-adaptive dynamic mesh refinement/coarsening technique. The results were compared with those of other numerical and experimental methods. It was shown that the present discontinuous Galerkin flow solver can preserve the vortex structure for significantly longer vortex convection time and can accurately capture the complex unsteady blade-vortex interaction flows, including generation and propagation of acoustic waves.

  • PDF