• Title/Summary/Keyword: 불연속

Search Result 1,092, Processing Time 0.033 seconds

Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System (소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2019
  • In many countries, such as developing countries where electricity is scarce, small wind turbines in the form of Off Grid are an effective solution to solve power supply problems. In some countries, the expansion of power systems and the decline of electricity-intensive areas have led to the use of small wind power in urban road lighting, mobile communications base stations, aquaculture and seawater desalination. With this change, the size of the small wind power industry is expected to have greater potential than large-scale wind power. In the case of small wind power generators, the generator is controlled at a variable speed, and the voltage and current generated by the generator have many harmonic components. To solve this problem, the AC to DC converter to be studied in this paper is a three-phase step-up type converter with a single switch. The inductor current is controlled in discontinuous mode, and has a characteristic of having a unit power factor by eliminating the harmonic of the input current. The proposed converter is composed of LCL filter and three phase rectification boost converter at the input stage and a single phase full bridge for grid connection. It is a control system with energy storage system(ESS) that the system stabilization can be pursued against the electric power.

Estimation of Mechanical Representative Elementary Volume and Deformability for Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 역학적 REV 및 변형특성 추정사례)

  • Um, Jeong-Gi;Ryu, Seongjin
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.59-72
    • /
    • 2022
  • This study employed a 3-D numerical analysis based on the distinct element method to estimate the strength and deformability of a Cretaceous biotite granitic rock mass at Gijang, Busan, Korea. A workflow was proposed to evaluate the scale effect and the representative elementary volume (REV) of mechanical properties for fractured rock masses. Directional strength and deformability parameters such as block strength, deformation modulus, shear modulus, and bulk modulus were estimated for a discrete fracture network (DFN) in a cubic block the size of the REV. The size of the mechanical REV for fractured rock masses in the study area was determined to be a 15 m cube. The mean block strength and mean deformation modulus of the DFN cube block were found to be 52.8% and 57.7% of the intact rock's strength and Young's modulus, respectively. A constitutive model was derived for the study area that describes the linear-elastic and orthotropic mechanical behavior of the rock mass. The model is expected to help evaluate the stability of tunnels and underground spaces through equivalent continuum analysis.

Estimation of 3-D Hydraulic Conductivity Tensor for a Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 삼차원 수리전도텐서 추정사례)

  • Um, Jeong-Gi;Lee, Dahye
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • A workflow is presented to estimate the size of a representative elementary volume and 3-D hydraulic conductivity tensor based on fluid flow analysis for a discrete fracture network (DFN). A case study is considered for a Cretaceous granitic rock mass at Gijang in Busan, Korea. The intensity and size of joints were calibrated using the first invariant of the fracture tensor for the 2-D DFN of the study area. Effective hydraulic apertures were obtained by analyzing the results of field packer tests. The representative elementary volume of the 2-D DFN was determined to be 20 m square by investigating the variations in the directional hydraulic conductivity for blocks of different sizes. The directional hydraulic conductivities calculated from the 2-D DFN exhibited strong anisotropy related to the hydraulic behavior of the study area. The 3-D hydraulic conductivity tensor for the fractured rock mass of the study area was estimated from the directional block conductivities of the 2-D DFN blocks generated for various directions in 3-D. The orientations of the principal components of the 3-D hydraulic conductivity tensor were found to be identical to those of delineated joint sets in the study area.

A Study on Movement of the Free Face During Bench Blasting (전방 자유면의 암반 이동에 관한 연구)

  • Lee, Ki-Keun;Kim, Gab-Soo;Yang, Kuk-Jung;Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Variables influencing the free face movement due to rock blasting include the physical and mechanical properties, in particular the discontinuity characteristics, explosive type, charge weight, burden, blast-hole spacing, delay time between blast-holes or rows, stemming conditions. These variables also affects the blast vibration, air blast and size of fragmentation. For the design of surface blasting, the priority is given to the safety of nearby buildings. Therefore, blast vibration has to be controlled by analyzing the free face movement at the surface blasting sites and also blasting operation needs to be optimized to improve the fragmentation size. High-speed digital image analysis enables the analyses of the initial movement of free face of rock, stemming optimality, fragment trajectory, face movement direction and velocity as well as the optimal detonator initiation system. Even though The high-speed image analysis technique has been widely used in foreign countries, its applications can hardly be found in Korea. This thesis aims at carrying out a fundamental study for optimizing the blast design and evaluation using the high-speed digital image analysis. A series of experimentation were performed at two large surface blasting sites with the rock type of shale and granite, respectively. Emulsion and ANFO were the explosives used for the study. Based on the digital images analysis, displacement and velocity of the free face were scrutinized along with the analysis fragment size distribution. In addition, AUTODYN, 2-D FEM model, was applied to simulate detonation pressure, detonation velocity, response time for the initiation of the free face movement and face movement shape. The result show that regardless of the rock type, due to the displacement and the movement velocity have the maximum near the center of charged section the free face becomes curved like a bow. Compared with ANFO, the cases with Emulsion result in larger detonation pressure and velocity and faster reaction for the displacement initiation.

Epidemiology and Control of Rice Blast in Korea (한국(韓國)에서의 도열병(病) 발생(發生), 만연(蔓延)과 그 방제(防除))

  • Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.356-369
    • /
    • 1985
  • In Korea, inevitable researches for the blast control exactly started from 1927 by the organization of Office of Rural Development with the local extensive outbreak of panicle blast at Jeonlla Buk-Do Province in 1926. At present, the rice blast is still one of the most destructive and widespread diseases in spite of considerable contributions by rice scientists, particularly plant pathologists during last 55 years in Korea. Rice blast control and management are very difficult because of the marked variability in pathogenicity of the blast fungus. From the results obtained through the disease surveys during last 70 years, different 3 prevalence type of blast such as bimodal leaf-blast type, bimodal panicle-blast type and bimodal continual blast type were recognized. In generally speaking, pattern of blast outbreak is said to be characterized by severe outbreak of panicle blast after slight outbreak of leaf blast with discontinuity between leaf and panicle blast. So we have to pay much attention for successful management of panicle blast giving direct influence to rice yield. Main factors induce blast epidemic were pointed out to be breakdown of the disease resistance, nutritional unbalance such as excess application of nitrogen, delay of transplantation and longspell of rain fall by extensive surveys and researches on blast during last 70 years in Korea. The fact some of Japonica varieties such as Kokuryomiyako, Tamanishiki, Ginbozu and Pungok belong to varietal group A had been cultivated with extensive acrage over 30 years in this country should be mentioned by Korean rice scientists. Differences in field resistance between varieties in the same group are detectable and apparently small but sometimes epidemiologically significant differential effects may be found out in case of blast. Much more attention should be payed to accumulate the knowledges on field resistance for successful management of blast. Excess application of nitrogen is more effective to outbreak of panicle blast than that of leaf blast of IR varieties. In comparatively low level application of nitrogen infection rate of panicle blast of IR varieties is considerably high. Low temperature effects on outbreak of blast is very great. It results in remarkable increase of the inoculum potential on the leaf lesions and infection of panicle blast in leaf sheathes of IR varieties during the booting stage. In economic point of view, it is concluded that 5 times sprays of effective fungicides including 3 times before and 2 times after heading is good enough to control blast. We have experienced no one of control measures for blast is superior to all others. The integrated control measures was established as guideline of blast control around 1950 in Korea. This guideline must be helpful for rice growers as long as rice growing continue.

  • PDF

A Geophysical Study on the Geotectonics and Opening Mechanism of the Ulleung Basin, East Sea (동해 울릉분지의 지구조 및 성인에 관한 지구물리학적 연구)

  • Suh, Man-Cheol;Lee, Gwang-Hoon;Shon, Ho-Woong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.34-44
    • /
    • 1998
  • Analysis of gravity, magnetic, and seismic reflection data from the Ulleung Basin, East Sea has provided some insights into the opening mechanism and crustal type of the basin. Free-air gravity anomaly data show positive anomalies of about 40~60 mgal near the Korea Plateau and Oki Bank and of about -20~20 mgal in the central basin. Bouguer gravity anomaly data exhibit NE-SW trending positive anomalies of about 150 mgal in the central basin which is interpreted to be related to high-density crustal material. Abrupt changes in both Free-air and Bouguer gravity anomaly profiles across the basin margins may be due to transition between continental and oceanic crusts. Magnetic anomalies in the basin are generally less than -400 nT. No stripe pattern is evident in the magnetic anomaly map but a NW-SE trending symmetric pattern is seen in some magnetic profiles. The symmetric pattern is probably associated with the high-density crustal material in the central basin suggested by Bouguer gravity anomaly. The acoustic basement in the deep part of the basin has only a small amount of local relief. No graben or half-graben structures are seen in the acoustic basement from which mechanical extension might be inferred. The lack of high-relief structures in the acoustic basement may suggest that the basin is underlain by oceanic crust or that the basement is overlain by thick volcanic layer which obscures the structures and relief of the basement. High-density crust in the central basin inferred from gravity data, abrupt changes in gravity anomalies across the basin margins, symmetric pattern seen in some magnetic anomaly profiles, and lack of relief in the acoustic basement may suggest sea-floor spreading origin of the Ulleung Basin.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안전성해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.183-193
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal fetid. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about $60^{\circ}$in the northern part and $83^{\circ}$in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9 MPa and that of weak sandstone was 10 MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north(east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30~$36^{\circ}$for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described abode. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures. the stability of 니ope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안정성 해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.430-440
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal field. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about 60$^{\circ}$ in the northern part and 83$^{\circ}$ in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9MPa and that of weak sandstone was 10MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north (east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30∼36$^{\circ}$ for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described above. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures, the stability of slope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

On the Marine Environment and Distribution of Phytoplankton Community in the Northern East China Sea in Early Summer 2004 (이른 여름 동중국해 북부해역의 해양환경과 식물플랑크톤 군집의 분포특성)

  • Yoon, Yang-Ho;Park, Jong-Sick;Soh, Ho-Young;Hwang, Doo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.100-110
    • /
    • 2005
  • We carried oui a study on the marine environment and distribution of phytoplankton community, such as chlorophyll a, species composition, dominant species and standing crops in the Northern East China Sea during early summer of 2004. According to the analysis of a T-S diagram, three characteristics of water masses were identified. We classified them into the coastal water mass, the cold water mass and the oceanic water mass. The first was characterized by the low temperature and the low salinity originated from China territory, the secondary was characterized by the low temperature, the low salinity and the high density originated from bottom cold water of Yellow Sea, and the third was done by the high temperature and salinity originated from Tsushima warm current. The internal discontinuous layer among them was farmed at the intermediate depth (about $5{\sim}30m$ layer). And the thermal front by upwelling region between the cold water mass and Tsushima warm current appeared in the central parts of the South Sea of Korea. The Phytoplankton community in the surface and stratified layers was a total of 44 species belonging to 26 genera. Dominant species were Prorocentrum triestinum, Scrippsiella trochoidea, Skeletonema costatum & Leptocylindrus mediterraneus. Standing crops of phytoplankton in the surface layer fluctuated between $0.3{\times}10^3$ cells/L and $10.8{\times}10^3$ cells/L. Diatoms appeared mainly in the Tsushima warm current regions, and flagellates occurred in the frontal zone and the low salinity regions where was the transfer areas of Chinese continental coastal waters. Chlorophyll a concentration by controlled phytoflagellate ratio in the South Sea of Korea was high values in the frontal zone and sub-surface layer. It was high concentration in the upwelling and coastal waters regions, but low concentration in the Tsushima warm current regions. The Chl-a maximum layers appeared in the thermochline depth or sub-surface layer lower than thermocline. The phytoplankton production in the South Sea of Korea was controlled by the expanded coastal waters of Chinese Continent which include a high concentrations of nutrients.

  • PDF

The Effect of Au Addition on the Hardening Mechanism in Ag-30wt%Pd-10wt%Cu Alloy (Ag-30wt% Pd-10wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Lee, K.D.;Nam, S.Y.
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.27-41
    • /
    • 1999
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-30Pd-10Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at 350-$550^{\circ}C$ Age-hardening characteristic of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, energy dispersed spectra and electron probe microanalysis. Principal results are as follows ; Maximum hardening occured in two co-phases of ${\alpha}_2$ + PdCu In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase($L1_o$ type) and an Ag-rich ${\alpha}_2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu redered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}{\to}{\alpha}_1+PdCu{\to}{\alpha}_2+PdCu$ at Pd/Cu = 3 Pd element of Ag-Pd-Cu alloy is more effective dental alloy on anti-corrosion and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF