• Title/Summary/Keyword: 불소고분자

Search Result 116, Processing Time 0.024 seconds

Synthesis and Characterization of Polyacrylate Derivatives Baying Protected Isocyanate Groups and fluorinated Alkyl Groups (보호된 이소시아네이트기와 불소화 알킬기를 가지는 아크릴계 고분자의 합성과 특성)

  • 김우식;김민우;정은천;백창훈;박이순;강인규;박수영
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.364-369
    • /
    • 2003
  • The copolymerizations of 2-fluorohexylethyl acrylate (FA) with 2-(o-(1'-methylpropylidenamino)carboxyl amino)ethyl methacrylate(MEM) with different molar ratios of the two monomers were carried out in methyl ethyl ketone using ${\alpha}$,${\alpha}$'-azobisisobutyronitrile as an initiator to synthesize water repellent polyacrylate derivatives with protected isocyanate groups. The contents of FA and MEM in the copolymers were analyzed by NMR. The monomer reactivity ratios of MEM (1) and FA (2) were determined by Kelen-Tudos plot as follows : r$\_$1/=1.59 and r$\_$2/=0.50. The number-average molecular weights of the copolymers were in the range of 39400 to 72400 and the polydispersity indexes were about 1.5. The protected isocyanate groups in the copolymers were converted into isocyanate groups above 150$^{\circ}C$. The contact angle of the copolymer with 65 ㏖% of FA fur water was about 95$^{\circ}$.

Properties and Performance of Electroactive Acrylic Copolymer-Platinum Composite Modified with Sodium Montrnorillonite (Sodium Montrnorillonite로 개질한 아크릴계 IPMC의 물성과 전기 구동 특성)

  • Jeong, Han-Mo;Kim, Byung-Chon;La, Young-Soo
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.380-384
    • /
    • 2005
  • Fluoroalkyl methacrylate and acrylic acid were bulk radical copolymerized in the presence of pure sodium montmorillonite or macromer intercalated sodium montmorilonite to get a fluorinated acrylic ionomer/sodium montmorillonite composite, and their physical properties, such as X-ray diffraction pattern, tensile properties, and water uptake, were examined. These composites were used to preparean ionic acrylic polymer-platinum composite (IPMC). The current and deformation responses of these IPMCs by external voltage applied across the platinum electrodes deposited on both sides of IPMC showed that the cation migration from anode to cathode was suppressed in the presence of sodium montmorillonite, causing reduced current and deformation.

Physical Properties of Poly(vinylidene fluoride) Fibers by Alkaline Surface Modification (알칼리 표면개질에 의한 poly(vinylidene fluoride) 섬유의 물리적 성질)

  • Jung, Yong-Chae;Jung, Min;Lee, Sun-Hwa;Cho, Jae-Hwan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.437-438
    • /
    • 2002
  • Poly(vinylidene fluoride)(PVDF)는 우수한 화학적 특성을 갖는 불소계 고분자로서 엔지니어링 플라스틱, 압전성 소재 및 봉합사용 소재로 이용되고 있다. 최근에는 PVDF의 화학적 개질을 통하여 전도성 고분자나 탄소섬유화 등의 기능성 소재로 만들려는 연구가 흥미롭게 이루어지고 있다. PVDF를 알칼리 처리하여 주쇄에 공액이중결합을 도입함으로써 전도성 고분자용 소재 또는 접착력이 개선된 PVDF 소재를 만들 수 있다. (중략)

  • PDF

Fabrication of Hydrocarbon Polymer Electrolyte Composite Membrane Incorporated with Pt Nanopartle for PEMFC and Its Characteristics (Pt 나노 입자가 도입된 연료전지용 탄화수소계 고분자 전해질 복합막의 제조 및 특성)

  • LEE, HONGKI
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.3
    • /
    • pp.246-251
    • /
    • 2017
  • To fabricate a hydrocarbon polymer electrolyte composite membrane incorporated with Pt nanoparticle, the polymer electrolyte membrane made of a sulfonated-fluorinated hydrophilic-hydrophobic block copolymer (SFBC) and sulfonated poly (ether ether ketone) (SPEEK) blend in the wight ratio of 1 : 1 was synthesized, and a simple drying process was used in order to incorporate Pt nanoparticle into the SFBC/SPEEK film by reducing platinum (II) bis (acetylacetonate), Pt $(acac)_2$. The distribution of the Pt nanoparticles was observed by transmission electron microscopy (TEM), and mechanical and thermal properties were tested by universal testing machine (UTM) and thermogravimetry analyzer (TGA). Cation conductivity, ion exchange capacity (IEC) and I-V characteristics were estimated.

The Role of Microporous Separator in Lithium Ion Secondary Battery (리튬이온 이차전지에서의 미세다공성 격리막의 역할)

  • 이영무;오부근
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.123-130
    • /
    • 1997
  • The characteristics of microporous separator for lithium ion secondary battery was introduced. Microporous separator is a key component of a lithium ion secondary battery because its basic properties were related with the performance and safety of the battery. Up to now, stretched microporous polyolefins such as polyethylene(PE) separator were mainly applied. It is still required to enhance wettability and shut-down property. For this purpose, the application of fluorovinylic polymers and surface modification of conventional polyolefinic microporous membrans we being continuously tried.

  • PDF

Filler-Elastomer Interactions. 8. Influence of Fluorinated Nanoscaled Silicas on Mechanical Interfacial Properties and Thermal Stabilities of Polyurethane Matrix Composites (충전제-탄성체 상호작용. 8. 불소 처리한 나노크기의 실리카가 폴리우레탄 기지 복합재료의 기계적 계면특성 및 열안정성에 미치는 영향)

  • 박수진;조기숙
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.91-97
    • /
    • 2003
  • The effect of fluorination of nanoscaled silicas on mechanical interfacial properties and thermal stabilities of the silica/polyurethane composites was investigated. The surface properties of the silica were studied in X-ray photoelectron spectroscopy and contact angle measurements. Their mechanical interfacial properties and thermal stabilities of the composites were characterized by tearing energy and decomposition activation energy, respectively. As experimental results, the London dispersive component of surface free energy and fluorine functional groups of silica surfaces were increased as a function of fluorination temperature resulting in improving the trearing energy ($G_{IIIC}$) of the composites. Also, the thermal stabilities of the composites were increased as the treatment temperature increases. These results could be explained that the fluorine functional groups on silica surfaces played an important role in improving the intermolecular interactions at interfaces between silicas and polyurethane matrix in a composite system.

Synthesis and Water Repellency of Polymers with Fluorinated Alkyl Group and Isocyanate Group (불소화 알킬기와 이소시아네이트기를 가지는 고분자의 합성과 발수성)

  • Baek Chang-Hoon;Kong Jong-Yun;Hyun Seok-Hee;Lim Yong-Jin;Kim Woo-Sik
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.433-439
    • /
    • 2005
  • The copolymers were prepared by the emulsion copolymerization of fluoroalky lacrylate-stearylacrylate-m-isopropenyl-${\alpha},\;{\alpha}'$-dimethylbenzyl isocyanate (TMI) in order to obtain water repellent polymers. The respective copolymerization rates of the three monomers considerably depended upon the use of the nonionic emulsifier and the nonionic-cationic mixed emusifier, and the optimum conditions were obtained. The particle sizes of the copolymers were in the range of 105 to 222nm. The particle sizes of the copolymers prepared by the use of the mixed emulsifiers were smaller than those of the copolymers prepared by the use of the nonionic emulsifier. The reactions of both TMI-N-methyl acetamide and TMI-cellobiose did not take place. However, the reaction of TMI-n-butylamine occurred. The water contact angles before and after washing three times for nylon and poly(ethylene terephthalate) (PET) fabrics coated with the copolymer prepared by the use of mixed emulsifier were about $139^{\circ}\;and\;133^{\circ}$ Therefore, the copolymer showed good durable repellency for nylon and PET.

Surface and Corrosion Protection Properties of Fluorine Doped PVDF by Plasma Fluorination (플라즈마 불소화에 의해 제조된 불소 도핑 PVDF의 표면 및 부식방지 특성)

  • Kim, Seokjin;Lim, Chaehun;Kim, Daesup;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-658
    • /
    • 2021
  • Polyvinylidene fluoride (PVDF) is a promising coating material because of its outstanding processability. The PVDF coating, however, has limitations in anti-corrosion application due to its weak hydrophobicity compared to that of other fluoropolymers. In this study, plasma fluorination was performed using carbon tetrafluoride (CF4) gas to improve anti-corrosion properties of PVDF. The fluorine content and hydrophobicity of PVDF were investigated in different CF4 flow rates, followed by the determination of anti-corrosion properties. The fluorine content on the surface of the PVDF film increased by up to 46.70%, but the surface free energy was independent of CF4 flow rate. Meanwhile, the surface roughness of the PDVF film tended to increase by up to 150% and then decrease with increasing CF4 flow rate. It is considered that the plasma fluorination affects the surface free energy due to the introduction of fluorine functional groups and surface etching. In addition, the degree of corrosion of the PVDF-coated Fe plate was significantly reduced from 49.2% to 19.0% compared to that of the uncoated Fe plate. In particular, the degree of corrosion of the fluorinated PVDF-coated Fe plate was 13.6%, which was 28.4% lower than that of the PVDF-coated Fe plate, showing improved anti-corrosion protection.

Preparation of novel PVA membranes and their pervaporation properties for esterification membrane reactor of TFEMA (불소화알콜의 에스텔화 막반응기를 위한 새로운 PVA막의 제조와 투과증발특성)

  • 안상만;장봉준;김정훈;이수복;이용택
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.156-159
    • /
    • 2004
  • TFEMA(2,2,2-trifluoroethylmethacrylate)는 광섬유 코팅제, 발수 발유제, 기능성 페인트, 방오가공제, 고분자의 표면개질제 등의 많은 응용제품에 활용되는 단량체로 그 시장규모가 국내에서 600억원, 전 세계에서 8,000억에 해당하는 고부가가치의 화학원료이다. TFEMA는 현재 산촉매하의 8.$0^{\circ}C$의 고온에서 TFEA(2,2,2-trifluoroethaol)와 MA(methacrylic acid)와의 에스텔화 반응으로 제조된다.(중략)

  • PDF