DOI QR코드

DOI QR Code

플라즈마 불소화에 의해 제조된 불소 도핑 PVDF의 표면 및 부식방지 특성

Surface and Corrosion Protection Properties of Fluorine Doped PVDF by Plasma Fluorination

  • 김석진 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 김대섭 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Kim, Seokjin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lim, Chaehun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Daesup (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2021.09.27
  • 심사 : 2021.11.05
  • 발행 : 2021.12.10

초록

Polyvinylidene fluoride (PVDF)는 우수한 가공성을 가지고 있어 코팅 재료로 유망하지만 다른 불소계 고분자에 비하여 소수성이 약하여 부식 방지 등 그 응용에 제한이 있다. 본 연구에서는 PVDF의 부식방지 특성을 향상시키고자 사불화탄소(CF4) 가스를 이용하여 플라즈마 불소화를 수행하였고, 유량에 따른 불소 함량 및 소수성 변화를 고찰하고 부식방지 특성을 확인하였다. PVDF 막 표면의 불소 함량은 사불화탄소 유량이 증가함에 따라 46.70%로 증가하였으나 그 표면자유에너지는 불소함량의 증가와 일치하지 않았다. 한편, PVDF 표면의 표면 거칠기는 불소화 유량에 따라 최대 150% 증가하다가 다시 감소하는 경향을 보였다. 이는 플라즈마 불소화는 불소화 기능기 도입 및 표면식각으로 인하여 표면자유에너지에 영향을 주는 것으로 판단된다. 또한, PVDF 코팅된 철판의 부식 정도는 미처리 철판에 비하여 표면 산소 함량이 49.2%에서 19.0% 이하로 크게 개선되었으며, 특히, 불소화 처리된 PVDF의 산소함량은 13.6%으로 불소화 처리되지 않은 PVDF보다 28.4 % 정도 낮아져 우수한 부식방지 특성을 보이는 것으로 관찰되었다.

Polyvinylidene fluoride (PVDF) is a promising coating material because of its outstanding processability. The PVDF coating, however, has limitations in anti-corrosion application due to its weak hydrophobicity compared to that of other fluoropolymers. In this study, plasma fluorination was performed using carbon tetrafluoride (CF4) gas to improve anti-corrosion properties of PVDF. The fluorine content and hydrophobicity of PVDF were investigated in different CF4 flow rates, followed by the determination of anti-corrosion properties. The fluorine content on the surface of the PVDF film increased by up to 46.70%, but the surface free energy was independent of CF4 flow rate. Meanwhile, the surface roughness of the PDVF film tended to increase by up to 150% and then decrease with increasing CF4 flow rate. It is considered that the plasma fluorination affects the surface free energy due to the introduction of fluorine functional groups and surface etching. In addition, the degree of corrosion of the PVDF-coated Fe plate was significantly reduced from 49.2% to 19.0% compared to that of the uncoated Fe plate. In particular, the degree of corrosion of the fluorinated PVDF-coated Fe plate was 13.6%, which was 28.4% lower than that of the PVDF-coated Fe plate, showing improved anti-corrosion protection.

키워드

과제정보

이 연구는 충남대학교 학술연구비에 의해 지원되었습니다.

참고문헌

  1. T. Xiang, Y. Han, Z. Guo, R. Wang, S. Zheng, S. Li, C. Li, and X. Dai, Fabrication of inherent anticorrosion superhydrophobic surfaces on metals, ACS Sustain. Chem. Eng., 6, 5598-5606 (2018). https://doi.org/10.1021/acssuschemeng.8b00639
  2. E.-C. Cho, C.-W. Chang-Jian, H.-C. Chen, K.-S. Chuang, J.-H. Zheng, Y.-S. Hsiao, K.-C. Lee, and J.-H. Huang, Robust multifunctional superhydrophobic coatings with enhanced water/oil separation, self-cleaning, anti-corrosion, and anti-biological adhesion, Chem. Eng. J., 314, 347-357 (2017). https://doi.org/10.1016/j.cej.2016.11.145
  3. Y.-C. Liu, W.-J. Huang, S.-H. Wu, M. Lee, J.-M. Yeh, and H.-H. Chen, Excellent superhydrophobic surface and anti-corrosion performance by nanostructure of discotic columnar liquid crystals, Corros. Sci., 138, 1-7 (2018). https://doi.org/10.1016/j.corsci.2018.03.044
  4. C. Peng, Z. Chen, and M. K. Tiwari, All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance, Nat. Mater., 17, 355-360 (2018). https://doi.org/10.1038/s41563-018-0044-2
  5. E. Leivo, T. Wilenius, T. Kinos, P. Vuoristo, and T. Mantyla, Properties of thermally sprayed fluoropolymer PVDF, ECTFE, PFA and FEP coatings, Prog. Org. Coat., 49, 69-73 (2004). https://doi.org/10.1016/j.porgcoat.2003.08.011
  6. Y. H. Kim, Y. S. Kwon, M. Y. Shon, and M. J. Moon, Corrosion protection performance of PVDF/PMMA-blended coatings by electrochemical impedance method, J. Electrochem. Sci. Technol., 9, 1-8 (2018). https://doi.org/10.5229/JECST.2018.9.1.1
  7. F. Liu, N. A. Hashim, Y. Liu, M. M. Abed, and K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci., 375, 1-27 (2011). https://doi.org/10.1016/j.memsci.2011.03.014
  8. G.-d. Kang and Y.-m. Cao, Application and modification of poly (vinylidene fluoride)(PVDF) membranes-a review, J. Membr. Sci., 463, 145-165 (2014). https://doi.org/10.1016/j.memsci.2014.03.055
  9. M. Cui, C. Xu, Y. Shen, H. Tian, H. Feng, and J. Li, Electrospinning superhydrophobic nanofibrous poly (vinylidene fluoride)/stearic acid coatings with excellent corrosion resistance, Thin Solid Films, 657, 88-94 (2018). https://doi.org/10.1016/j.tsf.2018.05.008
  10. A. Tressaud, E. Durand, C. Labrugcre, A. P. Kharitonov, G. V. Simbirtseva, L. N. Kharitonova, and M. Dubois, Surface modification of polymers treated by various fluorinating media, Acta. Chim. Slov., 60, 495-504 (2013).
  11. A. Tressaud, E. Durand, C. Labrugere, A. P. Kharitonov, and L. N. Kharitonova, Modification of surface properties of carbon-based and polymeric materials through fluorination routes: From fundamental research to industrial applications, J. Fluor. Chem., 128, 378-391 (2007). https://doi.org/10.1016/j.jfluchem.2006.12.015
  12. H. Jo, K. H. Kim, M.-J. Jung, J. H. Park, and Y.-S. Lee, Fluorination effect of activated carbons on performance of asymmetric capacitive deionization, Appl. Surf. Sci., 409, 117-123 (2017). https://doi.org/10.1016/j.apsusc.2017.02.234
  13. J.-H. Kim, E. Jeong, and Y.-S. Lee, Characteristics of fluorinated CNTs added carbon foams, Appl. Surf. Sci., 360, 1009-1015 (2016). https://doi.org/10.1016/j.apsusc.2015.11.111
  14. J. S. Im, T.-S. Bae, S. K. Lee, S.-H. Lee, E. Jeong, P. H. Kang, and Y.-S. Lee, Effects of porous carbon additives and induced fluorine on low dielectric constant polyimide synthesized with an e-beam, Mater. Res. Bull., 45, 1641-1647 (2010). https://doi.org/10.1016/j.materresbull.2010.07.005
  15. D. Y. Kim, S. J. In, and Y.-S. Lee, Effect of Fluorination and Ultrasonic Washing Treatment on Surface Characteristic of Poly (ethylene terephthalate), Polym. Korea, 37, 316-322 (2013). https://doi.org/10.7317/pk.2013.37.3.316
  16. R. Lee, C. Lim, M.-J. Kim, and Y.-S. Lee, Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination, Appl. Chem. Eng., 32, 55-60 (2021). https://doi.org/10.14478/ACE.2020.1098
  17. R. Zheng, Y. Chen, J. Wang, J. Song, X.-M. Li, and T. He, Preparation of omniphobic PVDF membrane with hierarchical structure for treating saline oily wastewater using direct contact membrane distillation, J. Membr. Sci., 555, 197-205 (2018). https://doi.org/10.1016/j.memsci.2018.03.041
  18. M. Resnik, R. Zaplotnik, M. Mozetic, and A. Vesel, Comparison of SF6 and CF4 plasma treatment for surface hydrophobization of PET polymer, Materials, 11, 311 (2018). https://doi.org/10.3390/ma11020311
  19. M.-J. Jung, H.-R. Yu, and Y.-S. Lee, Preparation of fluorinated graphite with high fluorine content and high crystallinity, Carbon Lett., 26, 112-116 (2018). https://doi.org/10.5714/CL.2018.26.112
  20. Y. C. Woo, Y. Chen, L. D. Tijing, S. Phuntsho, T. He, J.-S. Choi, S.-H. Kim, and H. K. Shon, CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation, J. Membr. Sci., 529, 234-242 (2017). https://doi.org/10.1016/j.memsci.2017.01.063
  21. M.-J. Jung, J. W. Kim, J. S. Im, S.-J. Park, and Y.-S. Lee, Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination, J. Ind. Eng. Chem., 15, 410-414 (2009). https://doi.org/10.1016/j.jiec.2008.11.001
  22. M. H. Lee, H. Y. Kim, J. Kim, J. T. Han, Y.-S. Lee, and J. S. Woo, Influence of oxyfluorinated graphite on fluorinated ethylene-propylene composites as bipolar plates, Carbon Lett., 30, 345-352 (2020). https://doi.org/10.1007/s42823-019-00103-2
  23. D. Merchan-Breuer, E. Murphy, B. Berka, E. Echeverria, D. N. McIlroy, and W. Merchan-Merchan, Biodiesel flames as a unique pyrolyzing carbon source for the synthesis of hydrophobic carbon films, Carbon Lett., 31, 389-406 (2021). https://doi.org/10.1007/s42823-020-00168-4
  24. A. Tressaud, E. Durand, and C. Labrugere, Surface modification of several carbon-based materials: comparison between CF4 rf plasma and direct F2-gas fluorination routes, J. Fluor. Chem., 125, 1639-1648 (2004). https://doi.org/10.1016/j.jfluchem.2004.09.022
  25. K. H. Kim, M.-J. Kim, J. W. Kim, K. M. Lee, H. G. Kim, and Y.-S. Lee, Enhanced creep behavior of carbon black/epoxy composites with high dispersion stability by fluorination, Carbon Lett., 29, 643-648 (2019). https://doi.org/10.1007/s42823-019-00075-3
  26. Q. D. Nguyen and K.-H. Chung, Assessment of Adhesion and Frictional Properties of Polymer Binders for Secondary Cells using Colloidal Probe Atomic Force Microscope, Tribol. Lubr., 35, 169-175 (2019).
  27. J.-J. Rha, Y.-S. Jeong, and W.-D. Kim, Fabrication of Super Water Repellent Surfaces by Vacuum Plasma, Trans. Korean Soc. Mech. Eng. B, 32, 143-147 (2008). https://doi.org/10.3795/KSME-A.2008.32.2.143
  28. S. H. Lee, Morphology Evolution of GaAs(100) Surfaces during Inductively Coupled Plasma Etching at BiasedPotential, Appl. Sci. Converg. Technol., 16, 250-261 (2007). https://doi.org/10.5757/JKVS.2007.16.4.250
  29. D. K. Owens and R. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci., 13, 1741-1747 (1969). https://doi.org/10.1002/app.1969.070130815
  30. M.-A. Yoon, C. Kim, S. Won, H.-J. Jung, J.-H. Kim, and K.-S. Kim, Surface Energy of Graphene Transferred by Wet and Dry Transfer Methods, Tribol. Lubr., 35, 9-15 (2019).
  31. I. J. Park, S-B Lee, and J. Koh, Surface Properties of Random Copolymer Containing Perfluoroalkyl Ethyl Acrylate, Hwahak Konghak, 30, 303-309 (1992).
  32. X. Wang and Q. Zhang, Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite, Powder Technol., 371, 55-63 (2020). https://doi.org/10.1016/j.powtec.2019.09.091
  33. T. Bodner, A. Behrendt, E. Prax, and F. Wiesbrock, Correlation of surface roughness and surface energy of silicon-based materials with their priming reactivity, Monatsh. Chem., 143, 717-722 (2012). https://doi.org/10.1007/s00706-012-0730-8
  34. E. Jeong, T.-S. Bae, S.-M. Yun, S.-W. Woo, and Y.-S. Lee, Surface characteristics of low-density polyethylene films modified by oxyfluorination-assisted graft polymerization, Colloids Surf. A Physicochem. Eng. Asp., 373, 36-41 (2011). https://doi.org/10.1016/j.colsurfa.2010.10.008
  35. S. K. Jang, S. J. Lee, J. C. Park, and S. J. Kim, Evaluation of Corrosion Tendency for S355ML Steel with Seawater Temperature, Corros. Sci. Tech., 14, 232-38 (2015). https://doi.org/10.14773/cst.2015.14.5.232