• Title/Summary/Keyword: 불균형 학습

Search Result 194, Processing Time 0.02 seconds

Improving target recognition of active sonar multi-layer processor through deep learning of a small amounts of imbalanced data (소수 불균형 데이터의 심층학습을 통한 능동소나 다층처리기의 표적 인식성 개선)

  • Young-Woo Ryu;Jeong-Goo Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.225-233
    • /
    • 2024
  • Active sonar transmits sound waves to detect covertly maneuvering underwater objects and detects the signals reflected back from the target. However, in addition to the target's echo, the active sonar's received signal is mixed with seafloor, sea surface reverberation, biological noise, and other noise, making target recognition difficult. Conventional techniques for detecting signals above a threshold not only cause false detections or miss targets depending on the set threshold, but also have the problem of having to set an appropriate threshold for various underwater environments. To overcome this, research has been conducted on automatic calculation of threshold values through techniques such as Constant False Alarm Rate (CFAR) and application of advanced tracking filters and association techniques, but there are limitations in environments where a significant number of detections occur. As deep learning technology has recently developed, efforts have been made to apply it in the field of underwater target detection, but it is very difficult to acquire active sonar data for discriminator learning, so not only is the data rare, but there are only a very small number of targets and a relatively large number of non-targets. There are difficulties due to the imbalance of data. In this paper, the image of the energy distribution of the detection signal is used, and a classifier is learned in a way that takes into account the imbalance of the data to distinguish between targets and non-targets and added to the existing technique. Through the proposed technique, target misclassification was minimized and non-targets were eliminated, making target recognition easier for active sonar operators. And the effectiveness of the proposed technique was verified through sea experiment data obtained in the East Sea.

Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem (데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석)

  • Lee, Jong-Hwa;Bang, Jiwon;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.18-28
    • /
    • 2020
  • With the development of the virtual community, the benefits that IT technology provides to people in fields such as healthcare, industry, communication, and culture are increasing, and the quality of life is also improving. Accordingly, there are various malicious attacks targeting the developed network environment. Firewalls and intrusion detection systems exist to detect these attacks in advance, but there is a limit to detecting malicious attacks that are evolving day by day. In order to solve this problem, intrusion detection research using machine learning is being actively conducted, but false positives and false negatives are occurring due to imbalance of the learning dataset. In this paper, a Random Oversampling method is used to solve the unbalance problem of the UNSW-NB15 dataset used for network intrusion detection. And through experiments, we compared and analyzed the accuracy, precision, recall, F1-score, training and prediction time, and hardware resource consumption of the models. Based on this study using the Random Oversampling method, we develop a more efficient network intrusion detection model study using other methods and high-performance models that can solve the unbalanced data problem.

Traffic Data Generation Technique for Improving Network Attack Detection Using Deep Learning (네트워크 공격 탐지 성능향상을 위한 딥러닝을 이용한 트래픽 데이터 생성 연구)

  • Lee, Wooho;Hahm, Jaegyoon;Jung, Hyun Mi;Jeong, Kimoon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, various approaches to detect network attacks using machine learning have been studied and are being applied to detect new attacks and to increase precision. However, the machine learning method is dependent on feature extraction and takes a long time and complexity. It also has limitation of performace due to learning data imbalance. In this study, we propose a method to solve the degradation of classification performance due to imbalance of learning data among the limit points of detection system. To do this, we generate data using Generative Adversarial Networks (GANs) and propose a classification method using Convolutional Neural Networks (CNNs). Through this approach, we can confirm that the accuracy is improved when applied to the NSL-KDD and UNSW-NB15 datasets.

Network Intrusion Detection with One Class Anomaly Detection Model based on Auto Encoder. (오토 인코더 기반의 단일 클래스 이상 탐지 모델을 통한 네트워크 침입 탐지)

  • Min, Byeoungjun;Yoo, Jihoon;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2021
  • Recently network based attack technologies are rapidly advanced and intelligent, the limitations of existing signature-based intrusion detection systems are becoming clear. The reason is that signature-based detection methods lack generalization capabilities for new attacks such as APT attacks. To solve these problems, research on machine learning-based intrusion detection systems is being actively conducted. However, in the actual network environment, attack samples are collected very little compared to normal samples, resulting in class imbalance problems. When a supervised learning-based anomaly detection model is trained with such data, the result is biased to the normal sample. In this paper, we propose to overcome this imbalance problem through One-Class Anomaly Detection using an auto encoder. The experiment was conducted through the NSL-KDD data set and compares the performance with the supervised learning models for the performance evaluation of the proposed method.

Dynamically weighted loss based domain adversarial training for children's speech recognition (어린이 음성인식을 위한 동적 가중 손실 기반 도메인 적대적 훈련)

  • Seunghee, Ma
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.647-654
    • /
    • 2022
  • Although the fields in which is utilized children's speech recognition is on the rise, the lack of quality data is an obstacle to improving children's speech recognition performance. This paper proposes a new method for improving children's speech recognition performance by additionally using adult speech data. The proposed method is a transformer based domain adversarial training using dynamically weighted loss to effectively address the data imbalance gap between age that grows as the amount of adult training data increases. Specifically, the degree of class imbalance in the mini-batch during training was quantified, and the loss function was defined and used so that the smaller the data, the greater the weight. Experiments validate the utility of proposed domain adversarial training following asymmetry between adults and children training data. Experiments show that the proposed method has higher children's speech recognition performance than traditional domain adversarial training method under all conditions in which asymmetry between age occurs in the training data.

A Study on the Improvement of Image Classification Performance in the Defense Field through Cost-Sensitive Learning of Imbalanced Data (불균형데이터의 비용민감학습을 통한 국방분야 이미지 분류 성능 향상에 관한 연구)

  • Jeong, Miae;Ma, Jungmok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.281-292
    • /
    • 2021
  • With the development of deep learning technology, researchers and technicians keep attempting to apply deep learning in various industrial and academic fields, including the defense. Most of these attempts assume that the data are balanced. In reality, since lots of the data are imbalanced, the classifier is not properly built and the model's performance can be low. Therefore, this study proposes cost-sensitive learning as a solution to the imbalance data problem of image classification in the defense field. In the proposed model, cost-sensitive learning is a method of giving a high weight on the cost function of a minority class. The results of cost-sensitive based model shows the test F1-score is higher when cost-sensitive learning is applied than general learning's through 160 experiments using submarine/non-submarine dataset and warship/non-warship dataset. Furthermore, statistical tests are conducted and the results are shown significantly.

Comparison of resampling methods for dealing with imbalanced data in binary classification problem (이분형 자료의 분류문제에서 불균형을 다루기 위한 표본재추출 방법 비교)

  • Park, Geun U;Jung, Inkyung
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.3
    • /
    • pp.349-374
    • /
    • 2019
  • A class imbalance problem arises when one class outnumbers the other class by a large proportion in binary data. Studies such as transforming the learning data have been conducted to solve this imbalance problem. In this study, we compared resampling methods among methods to deal with an imbalance in the classification problem. We sought to find a way to more effectively detect the minority class in the data. Through simulation, a total of 20 methods of over-sampling, under-sampling, and combined method of over- and under-sampling were compared. The logistic regression, support vector machine, and random forest models, which are commonly used in classification problems, were used as classifiers. The simulation results showed that the random under sampling (RUS) method had the highest sensitivity with an accuracy over 0.5. The next most sensitive method was an over-sampling adaptive synthetic sampling approach. This revealed that the RUS method was suitable for finding minority class values. The results of applying to some real data sets were similar to those of the simulation.

The Optimization of Ensembles for Bankruptcy Prediction (기업부도 예측 앙상블 모형의 최적화)

  • Myoung Jong Kim;Woo Seob Yun
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.39-57
    • /
    • 2022
  • This paper proposes the GMOPTBoost algorithm to improve the performance of the AdaBoost algorithm for bankruptcy prediction in which class imbalance problem is inherent. AdaBoost algorithm has the advantage of providing a robust learning opportunity for misclassified samples. However, there is a limitation in addressing class imbalance problem because the concept of arithmetic mean accuracy is embedded in AdaBoost algorithm. GMOPTBoost can optimize the geometric mean accuracy and effectively solve the category imbalance problem by applying Gaussian gradient descent. The samples are constructed according to the following two phases. First, five class imbalance datasets are constructed to verify the effect of the class imbalance problem on the performance of the prediction model and the performance improvement effect of GMOPTBoost. Second, class balanced data are constituted through data sampling techniques to verify the performance improvement effect of GMOPTBoost. The main results of 30 times of cross-validation analyzes are as follows. First, the class imbalance problem degrades the performance of ensembles. Second, GMOPTBoost contributes to performance improvements of AdaBoost ensembles trained on imbalanced datasets. Third, Data sampling techniques have a positive impact on performance improvement. Finally, GMOPTBoost contributes to significant performance improvement of AdaBoost ensembles trained on balanced datasets.

Design of Multilayer Perceptrons for Pattern Classifications (패턴인식 문제에 대한 다층퍼셉트론의 설계 방법)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.99-106
    • /
    • 2010
  • Multilayer perceptrons(MLPs) or feed-forward neural networks are widely applied to many areas based on their function approximation capabilities. When implementing MLPs for application problems, we should determine various parameters and training methods. In this paper, we discuss the design of MLPs especially for pattern classification problems. This discussion includes how to decide the number of nodes in each layer, how to initialize the weights of MLPs, how to train MLPs among various error functions, the imbalanced data problems, and deep architecture.

Estimation of Valence and Arousal from a single Image using Face Generating Autoencoder (얼굴 생성 오토인코더를 이용한 단일 영상으로부터의 Valence 및 Arousal 추정)

  • Kim, Do Yeop;Park, Min Seong;Chang, Ju Yong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.79-82
    • /
    • 2020
  • 얼굴 영상으로부터 사람의 감정을 예측하는 연구는 최근 딥러닝의 발전과 함께 주목받고 있다. 본 연구에서 우리는 연속적인 변수를 사용하여 감정을 표현하는 dimensional model에 기반하여 얼굴 영상으로부터 감정 상태를 나타내는 지표인 valance/arousal(V/A)을 예측하는 딥러닝 네트워크를 제안한다. 그러나 V/A 예측 모델의 학습에 사용되는 기존의 데이터셋들은 데이터 불균형(data imbalance) 문제를 가진다. 이를 해소하기 위해, 우리는 오토인코더 구조를 가지는 얼굴 영상 생성 네트워크를 학습하고, 이로부터 얻어지는 균일한 분포의 데이터로부터 V/A 예측 네트워크를 학습한다. 실험을 통해 우리는 제안하는 얼굴 생성 오토인코더가 in-the-wild 환경의 데이터셋으로부터 임의의 valence, arousal에 대응하는 얼굴 영상을 성공적으로 생생함을 보인다. 그리고, 이를 통해 학습된 V/A 예측 네트워크가 기존의 under-sampling, over-sampling 방영들과 비교하여 더 높은 인식 성능을 달성함을 보인다. 마지막으로 기존의 방법들과 제안하는 V/A 예측 네트워크의 성능을 정량적으로 비교한다.

  • PDF