• Title/Summary/Keyword: 불균형 학습

Search Result 194, Processing Time 0.027 seconds

Skin Disease Classification Technique Based on Convolutional Neural Network Using Deep Metric Learning (Deep Metric Learning을 활용한 합성곱 신경망 기반의 피부질환 분류 기술)

  • Kim, Kang Min;Kim, Pan-Koo;Chun, Chanjun
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.45-54
    • /
    • 2021
  • The skin is the body's first line of defense against external infection. When a skin disease strikes, the skin's protective role is compromised, necessitating quick diagnosis and treatment. Recently, as artificial intelligence has advanced, research for technical applications has been done in a variety of sectors, including dermatology, to reduce the rate of misdiagnosis and obtain quick treatment using artificial intelligence. Although previous studies have diagnosed skin diseases with low incidence, this paper proposes a method to classify common illnesses such as warts and corns using a convolutional neural network. The data set used consists of 3 classes and 2,515 images, but there is a problem of lack of training data and class imbalance. We analyzed the performance using a deep metric loss function and a cross-entropy loss function to train the model. When comparing that in terms of accuracy, recall, F1 score, and accuracy, the former performed better.

Effect Analysis of Data Imbalance for Emotion Recognition Based on Deep Learning (딥러닝기반 감정인식에서 데이터 불균형이 미치는 영향 분석)

  • Hajin Noh;Yujin Lim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.235-242
    • /
    • 2023
  • In recent years, as online counseling for infants and adolescents has increased, CNN-based deep learning models are widely used as assistance tools for emotion recognition. However, since most emotion recognition models are trained on mainly adult data, there are performance restrictions to apply the model to infants and adolescents. In this paper, in order to analyze the performance constraints, the characteristics of facial expressions for emotional recognition of infants and adolescents compared to adults are analyzed through LIME method, one of the XAI techniques. In addition, the experiments are performed on the male and female groups to analyze the characteristics of gender-specific facial expressions. As a result, we describe age-specific and gender-specific experimental results based on the data distribution of the pre-training dataset of CNN models and highlight the importance of balanced learning data.

Decision Tree Induction with Imbalanced Data Set: A Case of Health Insurance Bill Audit in a General Hospital (불균형 데이터 집합에서의 의사결정나무 추론: 종합 병원의 건강 보험료 청구 심사 사례)

  • Hur, Joon;Kim, Jong-Woo
    • Information Systems Review
    • /
    • v.9 no.1
    • /
    • pp.45-65
    • /
    • 2007
  • In medical industry, health insurance bill audit is unique and essential process in general hospitals. The health insurance bill audit process is very important because not only for hospital's profit but also hospital's reputation. Particularly, at the large general hospitals many related workers including analysts, nurses, and etc. have engaged in the health insurance bill audit process. This paper introduces a case of health insurance bill audit for finding reducible health insurance bill cases using decision tree induction techniques at a large general hospital in Korea. When supervised learning methods had been tried to be applied, one of major problems was data imbalance problem in the health insurance bill audit data. In other words, there were many normal(passing) cases and relatively small number of reduction cases in a bill audit dataset. To resolve the problem, in this study, well-known methods for imbalanced data sets including over sampling of rare cases, under sampling of major cases, and adjusting the misclassification cost are combined in several ways to find appropriate decision trees that satisfy required conditions in health insurance bill audit situation.

Prediction of CDOM absorption coefficient using Oversampling technique and Machine Learning in upstream reach of Baekje weir (백제보 상류하천구간의 Oversampling technique과 Machine Learning을 활용한 CDOM 흡수계수 예측)

  • Kim, Jinuk;Jang, Wonjin;Kim, Jinhwi;Park, Yongeun;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.46-46
    • /
    • 2022
  • 유기물의 복잡한 혼합물인 CDOM(Colored or Chromophoric Dissolved Organic Matter)은 하천 내 BOD(Biological Oxygen Demand), COD(Chemical Oxygen Demand) 및 유기 오염물질과 상당한 관련이 있다. CDOM은 가시광선 영역에서 빛을 흡수하는 성질을 가지고 있으며, 최근 원격감지 기술로 CDOM을 모니터링하기 위한 연구가 진행되고 있다. 본 연구에서는 백제보 상류 23km 구간에서 3년(2016~2018) 중 13일의 초분광영상을 활용하여 머신러닝 기반 CDOM을 추정 알고리즘을 개발하고자 한다. 초분광영상은 400~970 nm의 범위의 4 nm 간격 127개 대역의 분광해상도와 2 m의 공간해상도를 가진 항공기 탑재 AsiaFENIX 초분광 센서를 통해 수집하였으며 CDOM은 Millipore polycarbonate filter (𝚽47, 0.2 ㎛)에서 여과된 CDOM 샘플 자료를 200~800 nm의 흡수계수 스펙트럼으로 추출하여 사용하였다. CDOM 값은 전체기간 동안 2.0~11.0 m-1의 값 분포를 보였으며 5 m-1이상의 고농도 구간 자료개수가 전체 153개 샘플자료 중 21개로 불균형하다. 따라서 ADASYN(Adaptive Synthesis Sampling Approach)의 oversampling 방법으로 생성된 합성 데이터를 사용하여 원본 데이터의 소수계층 데이터 불균형을 해결하고 모델 예측 성능을 개선하고자 하였다. 생성된 합성 데이터를 입력변수로 하여 ANN(Artificial Neural Netowk)을 활용한 CDOM 예측 알고리즘을 구축하였다. ADASYN 기법을 통한 합성 데이터는 관측된 데이터의 불균형을 해결하여 기계학습 모델의 CDOM 탐지 성능을 향상시킬 수 있으며, 저수지 내 유기 오염물질 관리를 위한 설계를 지원하는데 사용할 수 있을 것으로 판단된다.

  • PDF

Mitigiating Data Imbalance via Ensembled Data Augmentation: An Explainable Credit Scoring Models (데이터 증강 기법의 앙상블을 통한 레이블 불균형 해 소: 설명 가능한 신용평가 모델을 중심으로)

  • Ji-Young Chung;So-Yeon Lee;Ye-Lin Yong;Min-Jun Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.483-486
    • /
    • 2023
  • 최근 금융 분야는 예측 모델의 복잡성으로 인한 블랙박스 문제와 금융 규제에 대한 관심이 높아지고 있다. 이에 따라 금융 업계는 신뢰성과 투명성을 강조하며, 특히 신용평가 분야에서 설명 가능한 모델 연구가 활발히 진행되고 있다. 또한, 해당 분야에서 소수 클래스에 대해 충분히 학습하지 못하고 다수 클래스에 과적합 될 수 있는 데이터 불균형 문제 역시 강조되고 있다. 이는 제 2종 오류(Type 2 Error)를 최소화해야 하는 상황에서 더욱 부각되며, 대출 상환 능력이 낮은 고객을 최대한 식별해야 하는 개인 신용평가 문제에서 매우 중요한 화두로 떠오르고 있다. 본 논문에서는 어텐션 메커니즘을 활용하여 모델의 설명 가능성을 개선하고, 분석 결과를 해석하는 데 도움이 되고자 한다. 더 나아가, SMOTE, GAN, ADASYN 등 총 다섯 가지 데이터 증강 기법을 실험하여, 이를 앙상블 하였을 때 소수 클래스 레이블에 대한 분류 정확도를 크게 개선할 수 있음을 확인하였다.

Siamese Neural Networks to Overcome the Insufficient Data Problems in Product Defect Detection (제품 결함 탐지에서 데이터 부족 문제를 극복하기 위한 샴 신경망의 활용)

  • Shin, Kang-hyeon;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.108-111
    • /
    • 2022
  • Applying deep learning to machine vision systems for defect detection of products requires vast amounts of training data about various defect cases. However, since data imbalance occurs according to the type of defect in the actual manufacturing industry, it takes a lot of time to collect product images enough to generalize defect cases. In this paper, we apply a Siamese neural network that can be learned with even a small amount of data to product defect detection, and modify the image pairing method and contrastive loss function by properties the situation of product defect image data. We indirectly evaluated the embedding performance of Siamese neural networks using AUC-ROC, and it showed good performance when the images only paired among same products, not paired among defective products, and learned with exponential contrastive loss.

  • PDF

Korean to Korean Translation Based Learning Contents Management System for Parents of Multi-Cultural Family (다문화 가정 학부모를 위한 한한변환 기반 학습콘텐츠 관리 시스템)

  • Kang, Yunhee;Kang, Myungju
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 2017
  • One of the main reasons of information divide of multi-cultural family is caused by language barrier that is associated with low education level. In addition the social problem can be triggered by the information divide that may increase the gap of economic inequality. With respect to the overall capability of accessibility of digital devices and the level of data utilization, the parent of muiti-cultural family's level is inferior to that of the parents of an ordinary family. However the traditional learning contents management system for those parents is not appropriate to decease the gap of the information divide. To handle this problem, it is necessary to construct a customized learning contents management system that is used to support the education of the parents of multi-cultural family depending on the level of understanding the learning contents written in korean. In this paper we design the korean to korean translation based learning contents management system and show the result of its prototype.

Pattern Analysis of Traffic Accident data and Prediction of Victim Injury Severity Using Hybrid Model (교통사고 데이터의 패턴 분석과 Hybrid Model을 이용한 피해자 상해 심각도 예측)

  • Ju, Yeong Ji;Hong, Taek Eun;Shin, Ju Hyun
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.75-82
    • /
    • 2016
  • Although Korea's economic and domestic automobile market through the change of road environment are growth, the traffic accident rate has also increased, and the casualties is at a serious level. For this reason, the government is establishing and promoting policies to open traffic accident data and solve problems. In this paper, describe the method of predicting traffic accidents by eliminating the class imbalance using the traffic accident data and constructing the Hybrid Model. Using the original traffic accident data and the sampled data as learning data which use FP-Growth algorithm it learn patterns associated with traffic accident injury severity. Accordingly, In this paper purpose a method for predicting the severity of a victim of a traffic accident by analyzing the association patterns of two learning data, we can extract the same related patterns, when a decision tree and multinomial logistic regression analysis are performed, a hybrid model is constructed by assigning weights to related attributes.

Automatic Augmentation Technique of an Autoencoder-based Numerical Training Data (오토인코더 기반 수치형 학습데이터의 자동 증강 기법)

  • Jeong, Ju-Eun;Kim, Han-Joon;Chun, Jong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.75-86
    • /
    • 2022
  • This study aims to solve the problem of class imbalance in numerical data by using a deep learning-based Variational AutoEncoder and to improve the performance of the learning model by augmenting the learning data. We propose 'D-VAE' to artificially increase the number of records for a given table data. The main features of the proposed technique go through discretization and feature selection in the preprocessing process to optimize the data. In the discretization process, K-means are applied and grouped, and then converted into one-hot vectors by one-hot encoding technique. Subsequently, for memory efficiency, sample data are generated with Variational AutoEncoder using only features that help predict with RFECV among feature selection techniques. To verify the performance of the proposed model, we demonstrate its validity by conducting experiments by data augmentation ratio.

Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution (불균형 데이터 환경에서 변수가중치를 적용한 사례기반추론 기반의 고객반응 예측)

  • Kim, Eunmi;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.29-45
    • /
    • 2015
  • Response modeling is a well-known research issue for those who have tried to get more superior performance in the capability of predicting the customers' response for the marketing promotion. The response model for customers would reduce the marketing cost by identifying prospective customers from very large customer database and predicting the purchasing intention of the selected customers while the promotion which is derived from an undifferentiated marketing strategy results in unnecessary cost. In addition, the big data environment has accelerated developing the response model with data mining techniques such as CBR, neural networks and support vector machines. And CBR is one of the most major tools in business because it is known as simple and robust to apply to the response model. However, CBR is an attractive data mining technique for data mining applications in business even though it hasn't shown high performance compared to other machine learning techniques. Thus many studies have tried to improve CBR and utilized in business data mining with the enhanced algorithms or the support of other techniques such as genetic algorithm, decision tree and AHP (Analytic Process Hierarchy). Ahn and Kim(2008) utilized logit, neural networks, CBR to predict that which customers would purchase the items promoted by marketing department and tried to optimized the number of k for k-nearest neighbor with genetic algorithm for the purpose of improving the performance of the integrated model. Hong and Park(2009) noted that the integrated approach with CBR for logit, neural networks, and Support Vector Machine (SVM) showed more improved prediction ability for response of customers to marketing promotion than each data mining models such as logit, neural networks, and SVM. This paper presented an approach to predict customers' response of marketing promotion with Case Based Reasoning. The proposed model was developed by applying different weights to each feature. We deployed logit model with a database including the promotion and the purchasing data of bath soap. After that, the coefficients were used to give different weights of CBR. We analyzed the performance of proposed weighted CBR based model compared to neural networks and pure CBR based model empirically and found that the proposed weighted CBR based model showed more superior performance than pure CBR model. Imbalanced data is a common problem to build data mining model to classify a class with real data such as bankruptcy prediction, intrusion detection, fraud detection, churn management, and response modeling. Imbalanced data means that the number of instance in one class is remarkably small or large compared to the number of instance in other classes. The classification model such as response modeling has a lot of trouble to recognize the pattern from data through learning because the model tends to ignore a small number of classes while classifying a large number of classes correctly. To resolve the problem caused from imbalanced data distribution, sampling method is one of the most representative approach. The sampling method could be categorized to under sampling and over sampling. However, CBR is not sensitive to data distribution because it doesn't learn from data unlike machine learning algorithm. In this study, we investigated the robustness of our proposed model while changing the ratio of response customers and nonresponse customers to the promotion program because the response customers for the suggested promotion is always a small part of nonresponse customers in the real world. We simulated the proposed model 100 times to validate the robustness with different ratio of response customers to response customers under the imbalanced data distribution. Finally, we found that our proposed CBR based model showed superior performance than compared models under the imbalanced data sets. Our study is expected to improve the performance of response model for the promotion program with CBR under imbalanced data distribution in the real world.