• Title/Summary/Keyword: 불균일성 보정

Search Result 40, Processing Time 0.019 seconds

Nonuniformity Correction Scheme Based on 3-dimensional Visualization of MRI Images (MRI 영상의 3차원 가시화를 통한 영상 불균일성 보정 기법)

  • Kim, Hyoung-Jin;Seo, Kwang-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.948-958
    • /
    • 2010
  • Human body signals collected by the MRI system are very weak, such that they may be easily affected by either external noise or system instability while being imaged. Therefore, this paper analyzes the nonuniformity caused by a design of the RF receiving coil in a low-magnetic-field MRI system, and proposes an efficient method to improve the image uniformity. In this paper, a method for acquiring 3D bias volume data by using phantom data among various methods for correcting such nonuniformity in MRI image is proposed, such that it is possible to correct various-sized images. It is shown by simulations that images obtained by various imaging methods can be effectively corrected using single bias data.

CCD Non-uniformity Correction Method based on Pixel Non-Linearity Model (픽셀 비선형성 모델을 기반으로 한 영상센서 불균일 특성 보정)

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Yong, Sang-Soon
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • All pixels of image sensor do not react uniformly when the light of same radiance enters into the camera. This non-uniformity has a direct influence on the image quality. However we can overcome it by calibration process under the special test-setup. Usually it is used the algorithm to get the correction coefficients under the specific illumination condition. But, this method has drawback in the very low or very high illumination due to pixel non-linearity. This paper describes the robust algorithm, which calculates the correction coefficients based on the pixel non-linearity model, against thew hole radiance. The paper shows the non-uniformity test results with the own camera and the specified test equipments as well. The results shows the best performance over the entire radiance when this method is applied.

Elapsed-time Method With Tacho Pulse Non-uniformity Correction (타코펄스 불균일성 보정이 포함된 펄스간 시간 측정방법)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.269-275
    • /
    • 2022
  • In ideal configuration, elapsed-time method can measure the exact reaction wheel speed. But in real configuration, the speed measurement error exists due to tacho pulse non-uniformity. In this research, we study the method which overcome the non-uniformity effects. First, we introduce the method which spin the wheel at the specific speed and measure the non-uniformity. Then, we propose the real-time measurement error correction method which uses the obtained non-uniformity information. This method calculate the speed candidates from the elapsed-time method's counts and non-uniformity information, and choose the closest speed to the real speed. Through simulation, we show that proposed method measure the exact speed regardless of non-uniformity, and fast wheel speed control is possible.

Compensation Methods for Non-uniform and Incomplete Data Sampling in High Resolution PET with Multiple Scintillation Crystal Layers (다중 섬광결정을 이용한 고해상도 PET의 불균일/불완전 데이터 보정기법 연구)

  • Lee, Jae-Sung;Kim, Soo-Mee;Lee, Kwon-Song;Sim, Kwang-Souk;Rhe, June-Tak;Park, Kwang-Suk;Lee, Dong-Soo;Hong, Seong-Jong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.52-60
    • /
    • 2008
  • Purpose: To establish the methods for sinogram formation and correction in order to appropriately apply the filtered backprojection (FBP) reconstruction algorithm to the data acquired using PET scanner with multiple scintillation crystal layers. Materials and Methods: Formation for raw PET data storage and conversion methods from listmode data to histogram and sinogram were optimized. To solve the various problems occurred while the raw histogram was converted into sinogram, optimal sampling strategy and sampling efficiency correction method were investigated. Gap compensation methods that is unique in this system were also investigated. All the sinogram data were reconstructed using 20 filtered backprojection algorithm and compared to estimate the improvements by the correction algorithms. Results: Optimal radial sampling interval and number of angular samples in terms of the sampling theorem and sampling efficiency correction algorithm were pitch/2 and 120, respectively. By applying the sampling efficiency correction and gap compensation, artifacts and background noise on the reconstructed image could be reduced. Conclusion: Conversion method from the histogram to sinogram was investigated for the FBP reconstruction of data acquired using multiple scintillation crystal layers. This method will be useful for the fast 20 reconstruction of multiple crystal layer PET data.

A Study of the Scene-based NUC Using Image-patch Homogeneity for an Airborne Focal-plane-array IR Camera (영상 패치 균질도를 이용한 항공 탑재 초점면배열 중적외선 카메라 영상 기반 불균일 보정 기법 연구)

  • Kang, Myung-Ho;Yoon, Eun-Suk;Park, Ka-Young;Koh, Yeong Jun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.146-158
    • /
    • 2022
  • The detector of a focal-plane-array mid-wave infrared (MWIR) camera has different response characteristics for each detector pixel, resulting in nonuniformity between detector pixels. In addition, image nonuniformity occurs due to heat generation inside the camera during operation. To solve this problem, in the process of camera manufacturing it is common to use a gain-and-offset table generated from a blackbody to correct the difference between detector pixels. One method of correcting nonuniformity due to internal heat generation during the operation of the camera generates a new offset value based on input frame images. This paper proposes a technique for dividing an input image into block image patches and generating offset values using only homogeneous patches, to correct the nonuniformity that occurs during camera operation. The proposed technique may not only generate a nonuniformity-correction offset that can prevent motion marks due to camera-gaze movement of the acquired image, but may also improve nonuniformity-correction performance with a small number of input images. Experimental results show that distortion such as flow marks does not occur, and good correction performance can be confirmed even with half the number of input images or fewer, compared to the traditional method.

Proposal and Verification of Image Sensor Non-uniformity Correction Algorithm (영상센서 픽셀 불균일 보정 알고리즘 개발 및 시험)

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.29-33
    • /
    • 2007
  • All pixels of image sensor do not react uniformly even if the light of same radiance enters into the camera. This non-uniformity comes from the sensor pixel non-uniformity and non-uniformity induced by the changing transmission of the telescope over the field. The first contribution to the non-uniformity has high spatial frequency nature and has an influence on the result and quality of the data compression. The second source of non-uniformity has low frequency nature and has no influence of the compression result. As the contribution resulting from the sensor PRNU(Photo Response Non-Uniformity) is corrected inside the camera electronics, the effect of the remaining non-uniformity to the compression result will be negligible. The non-uniformity correction result shall have big difference according to the sensor modeling and the calculation method to get correction coefficient. Usually, the sensor can be modeled with one dimensional coefficients which are a gain and a offset for each pixel. Only two measurements are necessary theoretically to get coefficients. However, these are not the optimized value over the whole illumination level. This paper proposes the algorithm to calculate the optimized non-uniformity correction coefficients over whole illumination radiance. The proposed algorithm uses several measurements and the least square method to get the optimum coefficients. The proposed algorithm is verified using the own camera electronics including sensor, electrical test equipment and optical test equipment such as the integrating sphere.

Comparison of Correction Coefficients for the Non-uniformity of Pixel Response in Satellite Camera Electronics (위성카메라 전자부의 화소간 응답불균일성 보정계수의 비교검토)

  • Kong, Jong-Pil;Lee, Song-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.89-98
    • /
    • 2011
  • Four kinds of gain and offset correction coefficients that are used to correct the nonuniformity between pixels are discussed. And their correction performance has been compared by performing image correction. using the correction coefficients calculated, on the real image data obtained from a newly fabricated camera electronics system. The performance of the correction coefficients depends in general on the number of the light input levels used to obtain the reference image. The result shows that, as expected obviously, when only two light input levles are used to obtain the reference image, even though its correction coefficients are relatively easily calculated, the correction performance is relatively poor. And with the number of light inputs increased to a value of larger than two, the correction performance is improved. It is noted, however, no Significant performance difference is found between the different correction coefficients employed.

Fixed Pattern Noise Reduction in Infrared Videos Based on Joint Correction of Gain and Offset (적외선 비디오에서 Gain과 Offset 결합 보정을 통한 고정패턴잡음 제거기법)

  • Kim, Seong-Min;Bae, Yoon-Sung;Jang, Jae-Ho;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.35-44
    • /
    • 2012
  • Most recent infrared (IR) sensors have a focal-plane array (FPA) structure. Spatial non-uniformity of a FPA structure, however, introduces unwanted fixed pattern noise (FPN) to images. This non-uniformity correction (NUC) of a FPA can be categorized into target-based and scene-based approaches. In a target-based approach, FPN can be separated by using a uniform target such as a black body. Since the detector response randomly drifts along the time axis, however, several scene-based algorithms on the basis of a video sequence have been proposed. Among those algorithms, the state-of-the-art one based on Kalman filter uses one-directional warping for motion compensation and only compensates for offset non-uniformity of IR camera detectors. The system model using one-directional warping cannot correct the boundary region where a new scene is being introduced in the next video frame. Furthermore, offset-only correction approaches may not completely remove the FPN in images if it is considerably affected by gain non-uniformity. Therefore, for FPN reduction in IR videos, we propose a joint correction algorithm of gain and offset based on bi-directional warping. Experiment results using simulated and real IR videos show that the proposed scheme can provide better performance compared with the state-of-the art in FPN reduction.

Mega Irises: Per-Pixel Projection Illumination Compensation for the moving participant in projector-based visual system (Mega Irises: 프로젝터 기반의 영상 시스템상에서 이동하는 체험자를 위한 화소 단위의 스크린 투사 밝기 보정)

  • Jin, Jong-Wook;Wohn, Kwang-Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.4
    • /
    • pp.31-40
    • /
    • 2011
  • Projector-based visual systems are widely used for VR and experience display applications. But the illumination irregularity on the screen surface due to the screen material and its light reflection properties sometimes deteriorates the user experience. This phenomenon is particularly troublesome when the participants of the head tracking VR system such as CAVE or the motion generation experience system continually move around the system. One of reason to illumination irregularity is projector-screen specular reflection component to participant's eye's position and it's analysis needs high computation complexity. Similar to calculate specular lighting term using GPU's programmable shader, Our research adjusts every pixel's brightness in runtime with given 3D screen space model to reduce illumination irregularity. For doing that, Angle-based brightness compensate function are considered for specific screen installation and modified it for GPU-friendly compute and access. Two aspects are implemented, One is function access transformation from angular form to product and the other is piecewise linear interpolate approximation.

Artifact Cancellation due to Rotational Motion in MRI (MRI내 회전운동에 기인한 아티팩트 제거)

  • Kim, Eung-Kyeu;Lee, Soo-Jong
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.155-158
    • /
    • 2005
  • MRI 스캔시 화상평면내에서 촬상대상물체의 회전은 MRI 신호에 위상오차와 불균일 표본화를 일으킨다. MRI 신호의 위상오차와 불균일 표본화에 대한 문제의 모델은 화상평면내 임의 중심과 원점에 관한 회전운동에 의해 열화된 MRI 신호들사이에 위상차가 존재함을 나타낸다. 이에 아티팩트가 포함된 MR 화상의 화질을 개선하기위해서 다음과 같은 방법을 제안한다. 우선, 2차원 회전운동의 회전각은 이미 알려져 있고, 회전중심의 위치가 미지인 경우에 대해 위상보정에 기초한 아티팩트를 보정하는 알고리즘과, 다음으로, 회전중심과 각도가 모두 미지인 2차원 회전운동에 대해 아티팩트를 보정하는 알고리즘을 제안한다. 이때, 미지 운동 파라메타를 예측하기위해 촬상대상물체의 경계바깥쪽에서 이상적인 MR 화상의 에너지는 최소가 되고, 촬상대상물체의 회전이 존재할 때 측정된 에너지는 증가한다는 성질을 이용한다. 이러한 성질을 이용해서 각 위상부호화 단계에서 미지의 회전각 크기를 추정하기위한 평가함수가 도입된다. 최종적으로 시뮬레이션 화상 및 실제화상에 적용해서 제안한 본 방법의 유효성을 확인한다.

  • PDF