• Title/Summary/Keyword: 불규칙활용

Search Result 259, Processing Time 0.031 seconds

A Feasibility Study for Mapping Using The KOMPSAT-2 Stereo Imagery (아리랑위성 2호 입체영상을 이용한 지도제작 가능성 연구)

  • Lee, Kwang-Jae;Kim, Youn-Soo;Seo, Hyun-Duck
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.197-210
    • /
    • 2012
  • The KOrea Multi-Purpose SATellite(KOMPSAT)-2 has a capability to provide a cross-track stereo imagery using two different orbits for generating various spatial information. However, in order to fully realize the potential of the KOMPSAT-2 stereo imagery in terms of mapping, various tests are necessary. The purpose of this study is to evaluate the possibility of mapping using the KOMPSAT-2 stereo imagery. For this, digital plotting was conducted based on the stereoscopic images. Also the Digital Elevation Model(DEM) and an ortho-image were generated using digital plotting results. An accuracy of digital plotting, DEM, and ortho-image were evaluated by comparing with the existing data. Consequently, we found that horizontal and vertical error of the modeling results based on the Rational Polynomial Coefficient(RPC) was less than 1.5 meters compared with the Global Positioning System(GPS) survey results. The maximum difference of vertical direction between the plotted results in this study and the existing digital map on the scale of 1/5,000 was more than 5 meters according as the topographical characteristics. Although there were some irregular parallax on the images, we realized that it was possible to interpret and plot at least seventy percent of the layer which was required the digital map on the scale of 1/5,000. Also an accuracy of DEM, which was generated based on the digital plotting, was compared with the existing LiDAR DEM. We found that the ortho-images, which were generated using the extracted DEM in this study, sufficiently satisfied with the requirement of the geometric accuracy for an ortho-image map on the scale of 1/5,000.

An Optimization of Hashing Mechanism for the DHP Association Rules Mining Algorithm (DHP 연관 규칙 탐사 알고리즘을 위한 해싱 메커니즘 최적화)

  • Lee, Hyung-Bong;Kwon, Ki-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.13-21
    • /
    • 2010
  • One of the most distinguished features of the DHP association rules mining algorithm is that it counts the support of hash key combinations composed of k items at phase k-1, and uses the counted support for pruning candidate large itemsets to improve performance. At this time, it is desirable for each hash key combination to have a separate count variable, where it is impossible to allocate the variables owing to memory shortage. So, the algorithm uses a direct hashing mechanism in which several hash key combinations conflict and are counted in a same hash bucket. But the direct hashing mechanism is not efficient because the distribution of hash key combinations is unvalanced by the characteristics sourced from the mining process. This paper proposes a mapped perfect hashing function which maps the region of hash key combinations into a continuous integer space for phase 3 and maximizes the efficiency of direct hashing mechanism. The results of a performance test experimented on 42 test data sets shows that the average performance improvement of the proposed hashing mechanism is 7.3% compared to the existing method, and the highest performance improvement is 16.9%. Also, it shows that the proposed method is more efficient in case the length of transactions or large itemsets are long or the number of total items is large.

An Efficient P2Proxy Caching Scheme for VOD Systems (VOD 시스템을 위한 효율적인 P2Proxy 캐싱 기법)

  • Kwon Chun-Ja;Choi Chi-Kyu;Lee Chi-Hun;Choi Hwang-Kyu
    • The KIPS Transactions:PartA
    • /
    • v.13A no.2 s.99
    • /
    • pp.111-122
    • /
    • 2006
  • As VOD service over the Internet becomes popular, a large sealable VOD system in P2P streaming environment has become increasing important. In this paper, we propose a new proxy caching scheme, called P2Proxy, to replace the traditional proxy with a sealable P2P proxy in P2P streaming environment. In the proposed scheme, each client in a group stores a different part of the stream from a server into its local buffer and then uses a group of clients as a proxy. Each client receives the request stream from other clients as long as the parts of the stream are available in the client group. The only missing parts of the stream which are not in the client group are directly received from the server. We represent the caching process between clients in a group and a server and then describe a group creation process. This paper proposes the directory structure to share the caching information among clients. By using the directory information, we minimize message exchange overload for a stream caching and playing. We also propose a recovery method for failures about the irregular behavior of P2P clients. In this paper, we evaluate the performance of our proposed scheme and compare the performance with the existing P2P streaming systems.

A Path Travel Time Estimation Study on Expressways using TCS Link Travel Times (TCS 링크통행시간을 이용한 고속도로 경로통행시간 추정)

  • Lee, Hyeon-Seok;Jeon, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.209-221
    • /
    • 2009
  • Travel time estimation under given traffic conditions is important for providing drivers with travel time prediction information. But the present expressway travel time estimation process cannot calculate a reliable travel time. The objective of this study is to estimate the path travel time spent in a through lane between origin tollgates and destination tollgates on an expressway as a prerequisite result to offer reliable prediction information. Useful and abundant toll collection system (TCS) data were used. When estimating the path travel time, the path travel time is estimated combining the link travel time obtained through a preprocessing process. In the case of a lack of TCS data, the TCS travel time for previous intervals is referenced using the linear interpolation method after analyzing the increase pattern for the travel time. When the TCS data are absent over a long-term period, the dynamic travel time using the VDS time space diagram is estimated. The travel time estimated by the model proposed can be validated statistically when compared to the travel time obtained from vehicles traveling the path directly. The results show that the proposed model can be utilized for estimating a reliable travel time for a long-distance path in which there are a variaty of travel times from the same departure time, the intervals are large and the change in the representative travel time is irregular for a short period.

A Study of Themes and Trends in Research of Global Maritime Economics through Keyword Network Analysis (키워드 네트워크 분석을 통한 세계 해운경제의 연구 주제와 동향에 대한 연구)

  • Jhang, Se-Eun;Lee, Su-Ho
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.1
    • /
    • pp.79-95
    • /
    • 2016
  • This study identifies themes and trends in maritime economics and logistics by examining 303 papers published in international journals from 2000 to 2014 using keyword network analysis. Network analysis can be used because the collected data follow Zipf's law and the power law. Utilizing the degree centrality and betweenness centrality, we find the important keywords in each five year period and determine the importance of shared keywords. To further explain keyword centralities, we invented a Delta-C algorithm to show the trends of keywords over time. We found that degree centrality is useful for identifying important research themes in each period because it is mainly concerned with the number of connections. On the other hands, betweenness centrality is useful to determine the unique themes that emerge in each of the specific periods.

Accuracy Evaluation and Analysis of SLAM for the Advancement of Forest Investigation (산림조사 고도화를 위한 SLAM의 정확도 평가 및 분석)

  • Yun, Hee-Cheon;Lee, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.734-739
    • /
    • 2018
  • The National Forestry Inventory of Korea has started the 7th (2016 ~ 2020) survey from the first (1972 ~ 1974) National Forest Situation Survey. The diameter at breast height was measured using a diameter tape, and the tree height was measured using a hypsometer in the National Forestry Inventory of Korea from the 1st to recently the 7th surveying. In the case of the diameter tape, however, irregularly shaped trees may cause a large error. In the case of a hypsometer, the height may be measured indirectly in 10 cm increments to the front edge of the tree, so that the accuracy may be lowered. This paper suggests the use of SLAM to improve the accuracy and advance forest investigations. For this purpose, a test bed for the measurement of DBH and tree height was set up, and the scan data was acquired directly using SLAM equipment. The accuracy of DBH and tree height measurements were analyzed. As a result, it was possible to calculate directly the DBH and tree height to 1mm unit, and it showed that the DBH accuracy of 2cm or less and the accuracy of the tree height accuracy of 1.3cm or less are sufficient for practical use. Based on the results, the scan data will be acquired for sample points and analyzed.

Frequent Origin-Destination Sequence Pattern Analysis from Taxi Trajectories (택시 기종점 빈번 순차 패턴 분석)

  • Lee, Tae Young;Jeon, Seung Bae;Jeong, Myeong Hun;Choi, Yun Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.461-467
    • /
    • 2019
  • Advances in location-aware and IoT (Internet of Things) technology increase the rapid generation of massive movement data. Knowledge discovery from massive movement data helps us to understand the urban flow and traffic management. This paper proposes a method to analyze frequent origin-destination sequence patterns from irregular spatiotemporal taxi pick-up locations. The proposed method starts by conducting cluster analysis and then run a frequent sequence pattern analysis based on identified clusters as a base unit. The experimental data is Seoul taxi trajectory data between 7 a.m. and 9 a.m. during one week. The experimental results present that significant frequent sequence patterns occur within Gangnam. The significant frequent sequence patterns of different regions are identified between Gangnam and Seoul City Hall area. Further, this study uses administrative boundaries as a base unit. The results based on administrative boundaries fails to detect the frequent sequence patterns between different regions. The proposed method can be applied to decrease not only taxis' empty-loaded rate, but also improve urban flow management.

AutoML and Artificial Neural Network Modeling of Process Dynamics of LNG Regasification Using Seawater (해수 이용 LNG 재기화 공정의 딥러닝과 AutoML을 이용한 동적모델링)

  • Shin, Yongbeom;Yoo, Sangwoo;Kwak, Dongho;Lee, Nagyeong;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • First principle-based modeling studies have been performed to improve the heat exchange efficiency of ORV and optimize operation, but the heat transfer coefficient of ORV is an irregular system according to time and location, and it undergoes a complex modeling process. In this study, FNN, LSTM, and AutoML-based modeling were performed to confirm the effectiveness of data-based modeling for complex systems. The prediction accuracy indicated high performance in the order of LSTM > AutoML > FNN in MSE. The performance of AutoML, an automatic design method for machine learning models, was superior to developed FNN, and the total time required for model development was 1/15 compared to LSTM, showing the possibility of using AutoML. The prediction of NG and seawater discharged temperatures using LSTM and AutoML showed an error of less than 0.5K. Using the predictive model, real-time optimization of the amount of LNG vaporized that can be processed using ORV in winter is performed, confirming that up to 23.5% of LNG can be additionally processed, and an ORV optimal operation guideline based on the developed dynamic prediction model was presented.

Development of Incident Detection Algorithm using GPS Data (GPS 정보를 활용한 돌발상황 검지 알고리즘 개발)

  • Kong, Yong-Hyuk;Kim, Hey-Jin;Yi, Yong-Ju;Kang, Sin-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.771-782
    • /
    • 2021
  • Regular or irregular situations such as traffic accidents, damage to road facilities, maintenance or repair work, and vehicle breakdowns occur frequently on highways. It is required to provide traffic services to drivers by promptly recognizing these regular or irregular situations, various techniques have been developed for rapidly collecting data and detecting abnormal traffic conditions to solve the problem. We propose a method that can be used for verification and demonstration of unexpected situation algorithms by establishing a system and developing algorithms for detecting unexpected situations on highways. For the detection of emergencies on expressways, a system was established by defining the expressway contingency and algorithm development, and a test bed was operated to suggest a method that can be used for verification and demonstration of contingency algorithms. In this study, a system was established by defining the unexpected situation and developing an algorithm to detect the unexpected situation on the highway, and a method that can be used verifying and demonstrating unexpected situations. It is expected to secure golden time for the injured by reducing the effectiveness of secondary accidents. Also predictable accidents can be reduced in case of unexpected situations and the detection time of unpredictable accidents.

Corneal Ulcer Region Detection With Semantic Segmentation Using Deep Learning

  • Im, Jinhyuk;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.1-12
    • /
    • 2022
  • Traditional methods of measuring corneal ulcers were difficult to present objective basis for diagnosis because of the subjective judgment of the medical staff through photographs taken with special equipment. In this paper, we propose a method to detect the ulcer area on a pixel basis in corneal ulcer images using a semantic segmentation model. In order to solve this problem, we performed the experiment to detect the ulcer area based on the DeepLab model which has the highest performance in semantic segmentation model. For the experiment, the training and test data were selected and the backbone network of DeepLab model which set as Xception and ResNet, respectively were evaluated and compared the performances. We used Dice similarity coefficient and IoU value as an indicator to evaluate the performances. Experimental results show that when 'crop & resized' images are added to the dataset, it segment the ulcer area with an average accuracy about 93% of Dice similarity coefficient on the DeepLab model with ResNet101 as the backbone network. This study shows that the semantic segmentation model used for object detection also has an ability to make significant results when classifying objects with irregular shapes such as corneal ulcers. Ultimately, we will perform the extension of datasets and experiment with adaptive learning methods through future studies so that they can be implemented in real medical diagnosis environment.