• Title/Summary/Keyword: 분해반응속도

Search Result 813, Processing Time 0.024 seconds

Hydrolysis of Sarin(GB) in Aqueous NaOH Solution (가성소다 수용액에서 사린(GB)의 가수분해)

  • Lee, Yong-Han;Lee, Jong-Chol;Hong, Deasik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.172-177
    • /
    • 2007
  • The hydrolysis reaction of sarin(GB), one of the nerve agents was studied in aqueous sodium hydroxide(NaOH) solutions to find the experimental conditions which can convert GB into the less toxic compounds. 10 wt% of GB was added into the aqueous NaOH(2.05 eq) in a small-scale jacket-attached reactor connected to a circulator. The reaction rate constants were measured at three temperatures(50, 70 and $90^{\circ}C$) and the reaction times required to degrade the material to > 99% were calculated at different temperatures. In this study, 10 wt% of GB was degraded to 99.99% in 1.2hr at $90^{\circ}C$ by the aqueous NaOH solution. The major hydrolysate of GB was isopropyl methylphosphonate.

Photocatalytic Degradation of Acetaldehyde and MEK using Batch Type Photo-Reactor (회분식 광촉매반응기를 이용한 아세트알데하이드와 MEK 제거특성 연구)

  • Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1527-1532
    • /
    • 2013
  • The kinetics of photocatalytic degradation of gaseous acetaldehyde and methylethylketone(MEK) were studied by the batch scale of photo-reactor. Variable parameters were initial concentration of acetaldehyde and MEK, water vapor content, and temperature. The photocatalytic degradation rate was increased with increasing concentration of acetaldehyde and MEK, but maintained gentle increase beyond a certain concentration. The Langmuir-Hinselwood model was successfully applied to correlate experimental data. Water vapor inhibited the degradation reaction of acetaldehyde and MEK. The optimum reaction temperature was $45^{\circ}C$ for acetaldehyde and MEK.

Nucleophilic Displacement at Sulfur Center (VIII). Solvolysis of 1-and 2-Naphthalene Sulfonyl Chlorides in Ethanol-Water Mixture (황의 친핵성 치환반응 (제8보). 물-에탄올 혼합용매 속에서 1-및 2-염화나프탈렌 술포닐의 가용매 분해반응)

  • Uhm, Tae Seop;Lee, Ik Choon;Kim, Jae Rok
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.358-363
    • /
    • 1976
  • Kinetic studies on solvolytic reactions of 1-and 2-naphthalene sulfonyl chlorides in ethanol-water mixtures have been carried out by means of conductometry at several temperatures. The rate constant for 2-naphthyl compound was larger than that for 1-naphthyl compound. This was contrary to the prediction of MO theory and could be rationalized as due to the peri-hydrogen effect in the transition state for 1-naphthyl compound. Based on m values of Winstein plots and n values of Kivinen pacolots it was concluded that the solvolytic displacement of the two naphthalene sulfonyl chlorides in ethanol-water mixtures proceed via $S_N2$ process.

  • PDF

Hydrolysis Mechanism of N-(benzoyl)-C-(N-methylanilino)imidoylchloride Derivatives (N-(benzoyl)-C-(N-methylanilino)imidoylchloride 유도체의 가수분해 반응메카니즘)

  • Kwon Ki-Sung;Lee Yong-Gu;Sung Nack-Do;Kim Chon-Suk
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.6
    • /
    • pp.618-625
    • /
    • 1993
  • Rate constants of hydrolysis of N-(benzoyl)-C-(N-methylanilino)imidoylchlorides were determined by UV spectrophotometry in 50% (v/v) aqueous methanol at 25$^{\circ}C$. On the basis of rate equation, substituent effect, solvent effect, salt effect, thermodynamic parameters and hydrolysis product analysis, it may be concluded that the hydrolysis of N-(benzoyl)-C-(N-methylanilino)imidoylchlorides proceed through $S_N$1 mechanism via azocarbonium ion intermediate in the range of from pH 3.0 to pH 10.0, while above pH 10.0 and below pH 3.0 the hydrolysis proceeds through nucleophilic addition-elimination (A$d_{N-E}$) mechanism.

  • PDF

Characteristics of Copper-catalyzed Cyanide Decomposition by Electrolysis (전해법에 의한 구리함유 시안의 분해특성)

  • Lee Jin-Yeung;Yoon Ho-Sung;Kim Sung-Don;Kim Chul-Joo;Kim Joon-Soo;Han Choon;Oh Jong-Kee
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • The characteristics of cyanide decomposition in aqueous phase by electric oxidization have been explored in an effort to develop a process to recycle waste water. Considering current efficiency and voltage, the free cyanide decomposition experiment by electric oxidization indicated that 5 V of voltage and copper catalytic Cu/CN mole ratio 0.05 was the most appropriate condition, where current efficiency was 26%, and decomposition speed was 5.6 mM/min. High voltage and excess copper addition increased decomposition speed a little bit but not current efficiency. The experiment of free cyanide density change proves that high density cyanide is preferred because speed and current efficiency increase with density. Also, the overall decomposition reaction could be represented by the first order with respcect to cyanide with the rate constant of $1.6∼7.3${\times}$10^{-3}$ $min^{-1}$ The mass transfer coefficient of electric oxidization of cyanide came out as $2.42${\times}$10^{-5}$ $min^{-1}$ Furthermore, the Damkohler number was calculated as 5.7 in case of 7 V and it was found that the mass transfer stage was the rate determining step.

Optimization of Epoxide Hydrolase-Catalyzed Enantioselective Hydrolysis of Racemic Styrene Oxide (Rhodotorula sp. CL-83 유래의 에폭사이드 가수분해효소를 이용한 라세믹 Styrene Oxide 입체특이성 가수분해 조건 최적화)

  • 이은열
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.765-768
    • /
    • 2002
  • Enantioselective hydrolysis of racemic styrene oxide by Rhodotorula sp. CL-82 was investigated. Reaction conditions including pH, temperature, and volume ratio of organic cosolvent were optimized using response surface methodology, and the optimal conditions of pH, temperature, and the volume ratio of cosolvent were determined to be 7.64, $33.26^{\circ}C$, and 3.09 %(v/v), respectively. Chiral (S)-phenyl oxirane could be obtained with high enantiomeric purity (ee > 99%) and 20% yield (theoretical yield = 50%) at the optimal rendition.

Determination of Thermal Decomposition Parameters for Ablative Composite Materials (삭마용 내열 복합재료의 열분해 반응인자 결정)

  • Kim Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.22-25
    • /
    • 2005
  • The thermal degradation of carbon/phenolic composite have been studied at high temperature by using thermogravimetric (TGA). A heating .ate of 5, 10, 15, 30 and $50^{\circ}C/min$ was used for the determination of thermal decomposition parameters of composite materials at high-temperature service. It has been shown that as the heating rates is increased, the peak decomposition rates are occur at higher temperature. Based on results of thermogravimetric analysis, the pyrolysis process is analyzed and physical and mathematical models for the process are proposed. The thermal analysis also has been conducted using transient heat conduction and the in-depth temperature distribution and the density profile were evaluated along the solid rocket nozzle. As a future effort the thermal decomposition parameter determined in this investigation will be used as input to thermal and mechanical analysis when subjected to solid rocket propulsion environment.

  • PDF

A Study on the Hydriding and Dehydriding Kinetics of a Mechanically-Alloyed Mg-25wt.%Ni Mixture (기계적 합금처리된 Mg-25wt.%Ni 혼합물의 수소화물 형성 및 분해에 대한 반응속도론적 연구)

  • Song, Myoung Youp
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 1999
  • The hydriding and dehydriding kinetics were studied for a Mg-25wt.%Ni mixture which has the most excellent hydrogen-storage characteristics among many mechanically-alloyed mixtures. The hydriding and dehydriding rates were measured and the rate-controlling steps were determined by comparing the hydriding and dehydriding rates with the theoretical rate equations. The rate-controlling step in the hydriding reaction is the Knudsen flow and the ordinary gaseous diffusion of hydrogen molecules through interparticle channels, cracks, etc. in the various ranges of weight percentage of absorbed hydrogen $H_a$ below $H_a$=4.0. In the $H_a$ range 4.0 < $H_a{\leq}4.25$, the diffusion of hydrogen atoms through the growing hydride layer is considered the rate-controlling step. The rate-controlling step in the dehydriding reaction is the Knudsen flow and the ordinary gaseous diffusion of hydrogen molecules for all the ranges of weight percentage of desorbed hydrogen $H_d$.

  • PDF

Effect of Functionalized Binary Silane Coupling Agents by Hydrolysis Reaction Rate on the Adhesion Properties of 2-Layer Flexible Copper Clad Laminate (이성분계 실란 커플링제의 가수분해속도 조절에 의한 2-FCCL의 접착특성 변화 연구)

  • Park, U-Joo;Park, Jin-Young;Kim, Jin-Young;Kim, Yong-Seok;Ryu, Jong-Ho;Won, Jong-Chan
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.302-307
    • /
    • 2011
  • The parameters of silanol formation reaction of organosilane including solvent type, solution concentration, pH and hydrolysis time influence the adhesion property of 2 layer flexible copper clad laminate (FCCL). Especially, the hydrolysis reaction time of silane coupling agent affects the formation of the silanol groups and their self-condensation to generate oilgomeric structure to enhance the surface treatment as an adhesive promoter. In our study, we prepared the binary silane coupling agents to control hydrolysis reaction rate and surface energy after treatment of silane coupling agents for increasing the adhesive property between a copper layer and a polyimide layer. The surface morphology of rolled copper foil, as a function of the contents of the coated binary silane coupling agent, was fully characterized. As fabricated 2-layer FCCL, we observed that adhesive properties were changed by hydrolysis rate and surface energy.

Effects of Air-flow Rate on Bio-drying of Food waste (송풍량이 음식물쓰레기 발효건조에 미치는 영향)

  • Yoo, Jung-Suk;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.65-73
    • /
    • 2018
  • This study was carried out for 20 days in a bio-drying batch reactor under the blowing conditions of 0.75, 1.00, 1.25, and $1.50L/min{\cdot}kg$ in order to optimize the operating conditions for the bio-drying of food wastes. The decomposition rate of organic matter during the bio-drying operation period was analyzed using modified Gompertz model. The maximum organic degradation (P) was 2.31, 2.52, 2.27 and 1.88 kg at air flow rates of 0.75, 1.00, 1.25 and $1.50L/min{\cdot}kg$, and the maximum organic degradation rate was 0.33, 0.45, 0.28, and 0.18 kg/day at 1.00, 1.25 and $1.50L/min{\cdot}kg$, respectively, showing excellent organic decomposition efficiency at a air flow rate of $1.00L/min{\cdot}kg$. The lag growth phase time (${\lambda}$) of the bio-drying reactor was 2.10, 1.48, 1.15, and 1.06 days at 0.75, 1.00, 1.25 and $1.50L/min{\cdot}kg$, respectively. The water removal rate in the operation of bio-drying reactor of food waste increased with the increase of air flow rate from the early stage of bio-drying to the middle stage, and the highest water removal rate was observed at the air flow rate of $1.00L/min{\cdot}kg$ at the end of bio-drying. The optimum air flow rate condition of bio-drying reactor was $1.00L/min{\cdot}kg$.