한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
/
pp.233-236
/
2001
본 논문에서는 가보필터를 이용한 복합무늬영상을 분할하는 알고리즘을 제안하였다. 영상을 분할하는데 있어 목적에 따라 다양한 방법이 있다. 그중 무늬(texture) 특징을 기반으로 영상을 분할하는 방법 중 가장 많이 알려진 것이 가보 필터이다. 이 필터는 탁월한 영상분할 결과를 얻을 수 있으나, 필터구현이 어렵다는 단점을 가지고 있다. 가보필터의 이 같은 반점인 복잡한 필터 처리를 단순히 하기 위해 전처리과정에서 필터를 영상에 맞게 선택하여 사용하였고, 영상 분할에 있어서도 histogram을 이용한 영상 분할을 수행함으로써 처리과정을 단순화 시켰다. 그 결과 간단한 알고리즘으로 빠른 수행이 이루어졌으며 좋은 결과를 가져올 수 있었다.
최근 Hardware Transaction Memory (HTM)으로 트랜잭션을 처리하는 기술이 각광을 받고 있다. 그러나 HTM의 처리 실패 요인 중 하나는 캐시를 사용하여 트랜잭션을 처리하여 용량에 제한이 존재한다. 이러한 이유로 long 트랜잭션의 경우 용량을 초과하여 처리가 불가능한 경우가 빈번히 발생한다. 이를 해결하기 위해 본 논문에서는 long 트랜잭션 처리를 위한 HTM 기반 트랜잭션 분할 기법을 제안한다. 제안하는 기법은 먼저 HTM 으로 수행하여 캐시 용량을 초과하는 경우, long 트랜잭션을 다수의 트랜잭션으로 분할한다. 분할된 트랜잭션이 수행이 완료되면, 부분 커밋(commit)을 수행하고 이에 대한 정확성을 제공하기 위해 validation을 수행한다. 분할된 모든 트랜잭션의 수행이 완료되면 최종적인 커밋을 수행한다. 이를 통하여 기존 HTM 으로 처리하기 불가능한 long 트랜잭션을 속도가 우수한 HTM을 기반으로 효율적인 트랜잭션 처리가 가능하다.
비공유 데이터베이스 클러스터는 그 구조의 특성 상 동적인 질의 패턴의 변화, 특정 데이터에 대한 질의 집중에 의한 부하 불균형 및 집중, 사용자 증가에 의한 처리량 한계 등의 문제가 발생한다. 이러한 문제를 해결하기 위해 데이터베이스 클러스터는 최근에 제안된 온-라인 확장기법을 사용하며, 이 기법은 데이터 베이스의 확장성에 의해 큰 영향을 받는다. 일반적으로 클러스터 시스템에서 사용되는 데이터 분할 기법에는 키 값의 순서대로 분할하는 라운드-로빈 분할 기법, 해쉬 함수를 이용해 데이터를 분할하는 해쉬 분할 기법, 범위에 따라 각 노드에 데이터를 분할하는 범위 분할기법, 그리고 조건식에 따라 데이터를 분할하는 조건식 분할 기법이 있다. 본 논문에서는 이 네 가지 분할 기법의 특성을 정리하고, 비공유 데이터베이스 클러스터에서 확장성에 있어서 우수한 분할 기법을 각 분할 기법의 성능평가를 통해 얻는다. 성능평가에서는 각각의 분한 기법을 평가하기 위해 확장 시 발생되는 이동 데이터의 크기, 질의처리에 대한 영향, CPU 사용률, 그리고 온-라인 확장기법의 수행 시 발생되는 특성에 대한 영향을 분석하며, 얻어진 결과를 토대로 비공유 데이터베이스 클러스터에서 가장 적합하면서도 온-라인 확장 기법적용을 위해 확장성이 우수한 데이터 분할기법을 찾는다.
최근 들어, 대용량의 데이터를 처리할 수 있는 결정 트리 생성 방법에 많은 관심이 집중되고 있다. 그러나, 대용량 데이터를 위한 대부분의 알고리즘은 일괄처리 방식으로 데이터를 처리하기 때문에 새로운 예제가 추가되면 이 예제를 반영한 결정 트리를 생성하기 위해 처음부터 다시 재생성해야 한다. 이러한 재생성에 따른 비용문제에 보다 효율적인 접근 방법은 결정 트리를 순차적으로 생성하는 접근 방법이다. 대표적인 알고리즘으로 BOAT와 ITI를 들 수 있다. BOAT는 대용량 데이터를 지원하는 순차적 알고리즘이 지만 분할 포인트가 노드에서 유지하는 신뢰구간을 넘어서는 경우와 분할 변수가 변경되면 그에 영향을 받는 부분은 다시 생성해야 한다는 문제점을 안고 있고, 이에 반해 ITI는 분할 포인트 변경과 분할 변수 변경을 효율적으로 처리하지만 대용량 데이터를 처리하지 못해 오늘날의 순차적인 트리 생성 기법으로 적합하지 못하다. 본 논문은 ITI의 기본적인 트리 재구조화 알고리즘을 기반으로 하여 대용량 데이터를 처리하지 못하는 ITI의 한계점을 극복하기 위해 전역적 범주화 기법을 이용한 접근방법을 제안한다.
최근 대용량 그래프의 반복 처리를 위하여 GPU를 이용하는 연구가 진행되고 있다. 메모리가 제한된 GPU를 이용하여 대용량 그래프를 처리하기 위해서는 그래프를 서브 그래프로 분할한 후 서브 그래프들을 스케줄링해서 처리해야 한다. 그러나 활성 정점에 따라 서브 그래프가 처리되기 때문에 그래프 처리 과정 속에서 불필요한 데이터 전송이 반복된다. 본 논문에서는 메모리가 제한된 GPU 환경에서 효율적인 그래프 알고리즘 처리 기법을 제안하고 성능 평가를 수행한다. 제안하는 기법은 그래프 차등 서브 그래프 스케줄링 방법과 그래프 분할 방법으로 구성된다. 대용량 그래프 분할 방법은 GPU에서 효율적으로 처리할 수 있도록 대용량 그래프를 서브 그래프로 분할할 수 있는 방법을 결정한다. 차등 서브그래프 스케줄링 방법은 GPU에서 처리하는 서브그래프를 스케줄링하여 반복적으로 사용되는 HOST-GPU 간의 데이터 중복 전송을 줄인다. 다양한 그래프 처리 알고리즘들의 성능 평가를 수행함으로써 제안하는 기법은 기존 분할 기법 대비 170%, 기존 처리 기법 대비 268% 향상되었다.
MR 영상에서 간의 인식은 간에 존재하는 질병을 파악하는 것뿐만 아니라 간에 대한 치료 방법이나 수술방법을 결정하는 중요한 정보를 제공한다. 이러한 일반적인 간의 인식 방법은 영역 분할 알고리즘을 기반으로 처리되어진다. IT분야에서의 영역 분할 알고리즘은 대부분 밝기 정보, 형태 정보, 패턴 분석 등 다양한 입력 정보의 컴퓨팅 처리를 통해 처리되어 진다. 그러나 이러한 컴퓨팅 방법으로는 앞서 언급된 입력정보들이 의미가 없을 경우, 영역 분할에 많은 제약이 따르게 된다. 따라서 본 논문은 이러한 컴퓨팅 처리의 근본적인 제약사항을 해결하고자, MR 이론의 R2-map정보 기반의 효과적인 영역 분할 방법은 제안하였다. 본 방법은 간 영역이 포함된 영상에서 실험하였으며, R2-map맵의 일부 특징점을 Region growing의 Seed point로 설정하여 경계가 모호하더라도 영역 분할이 가능하게끔 하였다. 해당 영상의 실험 결과 8.5%의 평균 오차로 일반적인 영역 분할 알고리즘에 비해 높은 정확도가 산출되었다.
기존에 제안된 대부분의 병렬 조인 알고리즘들은 데이타베이스가 여러 처리 노드에 분할되어 저장되는 데이타베이스 분할 시스템을 가정하였다. 데이타베이스 분할 시스템은 다수의 노드들을 연결할 수 있으며 지리적으로 분산된 환경도 지원할수 있다는 장점을 갖지만, 데이타베이스 공유 시스템에 비해 부하 분산이나 시스템 가용성이 떨어진다는 단점을 갖는다. 본 논문에서는 데이타베이스 공유 시스템에서 병렬 질의 처리기를 위한 병렬 해쉬 조인 알고리즘을 구현한다. 이를 위하여, 데이타베이스 공유 시스템에 적용 가능하도륵 병렬 질의 처리기를 구성하고 병렬 해쉬 조인 알고리즘의 처리 과정에 대해 설명 한다.
본 논문에서는 실시간 처리에 적합한 효율적인 동영상 객체 분할 알고리즘을 제시한다. 제안된 동영상 객체 분할 알고리즘은 임계치 적용과 지역적 워터쉐드 알고리즘을 복합적으로 적용하였다. 첫째로 임계치 분할방법을 사용하여 초기 객체 마스크를 구성하였고 이러한 초기객체 마스크는 현재영상에서의 영역분할을 위한 입력으로 들어가게 된다. 최종적으로 지역적인 워터쉐드 분할방법을 초기 객체영역의 불명확한 지역에서만 다시 수행하여 최종적인 객체영역을 획득하여 기존 방식에 비해 분할시간을 줄였으며 분할성능을 높였다. 본 논문에서는 잡음환경에서 객체를 추출하기위해 복합적인 분할방식에 초점을 두었다. 이러한 복합적인 분할방법을 사용함으로써 객체 마스크 추출성능의 향상과 수행시간절약을 가져올 수 있었다.
본 논문에서는 곡률 근사화를 이용한 3차원 영상의 표면 분할 알고리즘을 제안한다. 제안한 알고리즘은 기하학적인 접근방법으로 곡률 근사화 이용한 간략화 된 처리 과정의 적용과 곡률의 불연속 정도를 결정하는데 보다 용이한 방법을 제시한다. 이러한 효율적인 에지 검출을 기반으로 여러 가지 3차원 영상의 표면 분할 실험을 통하여 제안한 방법의 성능이 기존의 방법보다 우수함을 확인하였다.
동영상 분할은 컴퓨터 비전 분야에서 중요한 단계로 많이 연구되고 있다 그러나 동영상 분할은 계산 복잡도에 의해 제약을 받는다. 이를 해결하기 위해, 본 논문은 분산 유전자 알고리즘에 기반한 계산 효율을 높일 수 있는 새로운 동영상 분할 방법을 제안한다. 일반적으로 동영상에서 연속한 두 프레임은 높은 상관관계를 가진다. 따라서, 한 프레임의 분할 결과는 이전 프레임의 분할 결과를 사용해서 연속적으로 얻어진다. 그리고 중복된 계산을 제거하기 위해 움직이는 객체에 대응되는 염색체만을 진화시킨다. 실험 결과는 제안한 방법의 효율성을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.