• 제목/요약/키워드: 분할모델

검색결과 1,317건 처리시간 0.031초

배경 모델 학습을 통한 객체 분할/검출 및 파티클 필터를 이용한 분할된 객체의 움직임 추적 방법 (Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter)

  • 임수창;김도연
    • 한국정보통신학회논문지
    • /
    • 제20권8호
    • /
    • pp.1537-1545
    • /
    • 2016
  • 실시간영상에서 객체의 분할 및 추적은 침입자 감시와 로봇의 물체 추적, 증강현실의 객체 추적등 다양한 분야에서 사용되고 있다. 본 논문에서는 초기 입력 영상의 일부를 학습하여 배경모델로 제작한 후, 배경제거 방법을 이용하여 움직이는 객체의 분할을 통해 객체를 검출하였다. 검출된 객체의 영역을 기반으로 HSV 색상히스토그램과 파티클 필터를 이용하여 객체의 움직임을 추적하는 방법을 제안한다. 제안한 분할 방법은 평균 배경모델을 이용한 방법보다 주변환경 변화의 영향을 적게 받으며, 움직이는 객체의 검출 성능이 더욱 우수하였다. 또한 단일 객체 및 다수의 객체가 존재하는 환경에서 추적 객체가 유사한 색상 객체와 겹치는 경우, 추적 객체의 영역 절반 이상이 가려지는 경우에도 지속적으로 추적하는 결과를 얻을 수 있었다. 2개의 비디오 영상을 사용한 실험결과는 평균 중첩율 85.9%, 추적률 96.3%의 성능을 보여준다.

멀티 브랜치 네트워크 구조 탐색을 사용한 구름 영역 분할 (Semantic Segmentation of Clouds Using Multi-Branch Neural Architecture Search)

  • 정치윤;문경덕;김무섭
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.143-156
    • /
    • 2023
  • 인공위성이 촬영한 영상의 내용을 정확하게 분석하기 위해서는 영상에 존재하는 구름 영역을 정확하게 인지하는 것이 필요하다. 최근 다양한 분야에서 딥러닝(deep learning) 모델이 뛰어난 성능을 보여줌에 따라 구름 영역 검출을 위해 딥러닝 모델을 적용한 방법들이 많이 제안되고 있다. 하지만 현재 구름 영역 검출 방법들은 의미 영역 분할 방법의 네트워크 구조를 그대로 사용하여 구름 검출 성능을 향상하는 데는 한계가 있다. 따라서 본 논문에서는 구름 검출 데이터 세트에 다중 브랜치 네트워크 구조 탐색을 적용하여 구름 영역 검출에 최적화된 네트워크 모델을 생성함으로써 구름 검출 성능을 향상하는 방법을 제안한다. 또한 구름 검출 성능을 향상하기 위하여 의미 영역 분할 모델의 학습 단계와 평가 단계의 평가 기준 불일치를 해소하기 위해 제안된 soft intersection over union (IoU) 손실 함수를 사용하고, 다양한 데이터 증강 방법을 적용하여 학습 데이터를 증가시켰다. 본 논문에서 제안된 방법의 성능을 검증하기 위하여 아리랑위성 3/3A호에서 촬영한 영상으로 구성된 구름 검출 데이터 세트를 사용하였다. 먼저 제안 방법과 의미 영역 분할 데이터 세트에서 탐색된 기존 네트워크 모델의 성능을 비교하였다. 실험 결과, 제안 방법의 mean IoU는 68.5%이며, 기존 모델보다 mIoU 측면에서 4%의 높은 성능을 보여주었다. 또한 soft IoU 손실 함수를 포함한 다섯 개의 손실 함수를 적용하여 손실 함수에 따른 구름 검출 성능을 분석하였으며, 실험 결과 본 연구에서 사용한 soft IoU 함수가 가장 좋은 성능을 보여주었다. 마지막으로 의미 영역 분할 분야에서 활용되는 최신 네트워크 모델과 제안 방법의 구름 검출 성능을 비교하였다. 실험 결과, 제안 모델이 의미 영역 분할 분야의 최신 모델들보다 mIoU와 정확도 측면에서 더 나은 성능을 보여주는 것을 확인하였다.

반복 축 하중을 받는 트러스 요소의 탄소성 좌굴거동 해석기법에 관한 연구 (Analytical Method for Elastoplastic Behavior of Truss element under Cyclic Axial Loading)

  • 백기열
    • 한국강구조학회 논문집
    • /
    • 제20권3호
    • /
    • pp.377-387
    • /
    • 2008
  • 트러스 구조는 단면의 효율이 높고, 단순하면서도 합리적인 형태로 사용될 수 있어 입체적인 대공간 구조의 지붕구조에 자주 사용되는 구조이지만, 구조물을 구성하는 부재의 수가 방대하며 세장하게 된다. 또한 구조물 전체의 거동은 개부재의 좌굴에 지배되는 경우가 대부분이므로 트러스 구조를 해석할 경우에는 개부재의 탄소성 좌굴거동 및 좌굴 후 거동을 고려하는 것이 필수적이다. 반복 축 하중을 받는 트러스 부재의 좌굴 후 거동을 해석하기 위해서는 일반적으로 보 요소를 이용한 요소분할 모델 및 소성힌지 모델이 사용되지만, 전체 구조물을 해석할 경우 계산 부하 및 불안정성이 증가하므로 유용한 방법이라고 할 수 없다. 본 연구에서는 트러스 부재의 탄소성 좌굴거동을 표현할 수 있는 해석기법의 개발을 목적으로, 열역학을 사용한 정식화를 통해 1개의 요소로 부재 전체의 거동을 표현 가능한 수치해석 기법을 유도한다. 제안모델은 부재의 요소 분할을 필요로 하지 않으므로 계산상의 효율성이 높은 모델이며 부재 중앙의 회전변위를 부재내력의 손상정도로 판단하여 좌굴 후 거동을 표현하는 데미지 모델 및 세장비가 작은 경우에 유용한 근사해석법 등을 제안한다. 또한 2종류의 제안모델 해석결과와 유한요소법의 분할모델 해석결과를 비교하여, 제안모델의 신뢰성을 검토하였다.

칼라이미지의 영역분할을 위한 두 알고리즘의 비교분석 (Comparative Analyses of Two Algorithms for Region Segmentation of Color Image)

  • 허민권;성병우;최흥국;김상균;서정욱
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 1998년도 춘계학술발표논문집
    • /
    • pp.83-88
    • /
    • 1998
  • 칼라이미지를 인식 및 분석을 하기 위해서는 이미지에 대한 영역분할이 우선적으로 먼저 이루어져야 되므로, 본 연구에서는 영역분할에 대한 두 개의 알고리즘을 구현하여 비교 분석하였다. 여러 가지 영역분할 방법 중에서 가장 쉽게 적용할 수 있고 또 가장 빠르게 영역을 분할 할 수 있는 Box classification 알고리즘을 이용하여 심근조직 표본의 현미경 영상이미지에 대해서 육안으로 선택한 영역과 histogram을 미분하여 최저 값에 문턱치를 정하여 줌으로써 선택한 영역에 대해 추출하고 이들 각각을 HLS 칼라모델에서 비교 분석하였다.

  • PDF

영역 분할을 이용한 얼굴 영역 검출 (Face Detection Using Region Segmentation)

  • 박선영;이재원;강병두;김종호;김상균
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.712-714
    • /
    • 2004
  • 본 논문에서는 다양한 변화에서 얼굴을 효과적으로 검출할 수 있는 방법론을 제안한다. 우리는 복잡한 배경에서 보다 효과적으로 얼굴 영역을 검출하기 위해 영역 분할 알고리즘인 JSEG를 이용하여 영역을 분할을 하게 된다. 그리고 조명 변화에 따른 간섭이 비교적 작은 YCrCb 칼라 모델을 이용하여 분할된 영역에서 후보 얼굴 영역을 찾는다. 마지막으로 보다 정확한 결과를 위하여 검출된 얼굴 후보 영역에서 눈과 눈썹을 검출하고 눈과 눈썹의 기하학적 정보를 이용해서 최종 얼굴 영역을 결정한다. 영역 분할을 이용함으로써 복잡한 배경과 다양한 조명 변화를 지닌 환경에서 다양한 얼굴 영상들을 실험한 결과 높은 정확도를 보여주었다.

  • PDF

계층적 은닉 마코프 모델을 이용한 비디오 시퀀스의 셧 경계 검출 (Shot Boundary Detection of Video Sequence Using Hierarchical Hidden Markov Models)

  • 박종현;조완현;박순영
    • 한국통신학회논문지
    • /
    • 제27권8A호
    • /
    • pp.786-795
    • /
    • 2002
  • 본 논문에서는 계층적 은닉 마코프 모델을 이용한 히스토그램과 모우멘트 기반의 동영상 장면전환 검출 방법을 제안한다. 제안된 방법은 웨이블릿 변환된 영상의 저주파 부 밴드로부터 히스토그램을 추출하며, 고주파 부 밴드로부터는 방향성 모우멘트를 추출한다. 그리고 수동적으로 분할된 비디오로부터 추출한 히스토그램 차와 모우멘트 차를 관측값으로 사용하여 은닉 마코프 모델을 학습한다. 비디오 분할 과정은 두 단계로 구성되는데, 먼저 히스토그램 기반의 은닉 마코프 모델은 입력된 비디오에 대하여 셧, 컷, 그리고 점진적인 장면전환의 3개의 범주로 분할한다. 그리고 두 번째 단계에서는 모우멘트 기반의 은닉 마코프 모델을 사용하여 점진적인 장면 전환을 더 세밀하게 페이드와 디졸브로 분할한다. 실험결과 제안된 방법은 기존의 경계값 기반의 방법보다 더 효율적으로 동영상의 셧 경계를 분할하였음을 볼 수 있었다.

강건한 음향모델을 위한 모델의 상태와 문맥환경에 관한 연구 (A Study on Context Environment and Model State for Robustness Acoustic Models)

  • 최재영;오세진;황도삼
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.366-369
    • /
    • 2003
  • 본 연구에서는 강건한 문맥의존 음향모델을 작성하기 위한 기초적인 연구로서 문맥환경과 상태수의 변화에 따른 음향모델의 성능을 고찰하고자 한다. 음성은 시간함수로 표현되며 음절, 단어, 연속음성을 발성할때 자음과 모음에 따라 발성시간에 차이가 있으며 음성인식의 최소 인식단위로 널리 사용되는 음소의 앞과 뒤에 오는 문맥환경에 따라 인식성능에 많은 차이를 보이고 있다. 따라서 본 연구에서는 시간의 변화(상태수의 변화)와 상태분할 과정에서 문맥환경의 변화를 고려하여 다양한 형태의 문맥의존 음향모델을 작성하였다. 모델학습은 음소결정트리 기반 SSS 알고리즘(Phonetic Decision Tree-based Successive State Splitting: PDT-555)을 이용하였다 PDT-SSS 알고리즘은 미지의 문맥정보를 해결하기 위해 문맥방향과 시간방향으로 목표 상태수에 도달할 때까지 상태분할을 수행하여 모델을 작성하는 방법이다. 본 연구에서 강건한 문맥의존 음향모델을 학습하기 위한 방법의 유효성을 확인하기 위해 국어공학센터의 452 단어를 대상으로 음소와 단어인식 실험을 수행하였다. 실험결과, 음성의 시간변이에 따른 모델의 상태수와 각 음소의 문맥환경에 따라 인식성능의 변화를 고찰할 수 있었다. 따라서 본 연구는 향후 음성인식 시스템의 강건한 문맥의존 음향모델을 작성하는데 유효할 것으로 기대된다.

  • PDF

행위 모델의 변환을 이용한 수직적 분할 시험 (Vertical Division Testing by Model Transformation of Activity Model)

  • 서광익;최은만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.415-418
    • /
    • 2007
  • 최근 활발히 진행되고 있는 모델 기반 공학에 관한 연구 중 모델 변환은 소스 모델을 입력 받아 다른 차원의 뷰를 제공하는 타겟 모델을 출력한다. 이러한 모델 변환은 메타모델을 사용하여 동일한 시스템을 서로 다른 이해관계자들의 관점에서 이해할 수 있는 방법을 제공한다. 동일한 시스템이라 하더라도 개발자와 시험자 그리고 사용자들이 보는 주요 관점은 다를 수 있다. 본 논문에서는 시험자의 관점에서 수직적 분할 시험이 가능하도록 입력 모델인 UML의 행위 다이어그램으로부터 출력 모델인 단위 시험을 위한 상태 다이어그램으로의 모델 변환에 대해 연구하고, 생성된 상태 다이어그램을 통해 시험 사례를 작성한다.

기능 분할을 통한 이동 에이전트 그룹 협력 모델 (Mobile Agent Group Collaborating Model Using Function Division)

  • 이승호;이근상;전병국;최영근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.36-38
    • /
    • 1999
  • 이동 에이전트 시스템의 응용 분야가 점점 넓어지고, 사용자가 좀 더 강력한 에이전트를 요구함에 따라 이동 에이전트의 협력 작업이 필요하게 되었다. 그러나 기존의 에이전트 협력 방법인 주(master)-종(slave) 구조는 빈번한 원격 통신으로 인한 네트워크 오버헤드, 주 에이전트에의 과도한 부하 등의 단점을 가지고 있다. 본 논문에서는 이러한 단점을 보완하기 위해 기능 분할(function division)을 통한 에이전트 그룹 협력 모델을 제시한다. 이 모델은 주 에이전트와 종 에이전트의 기능을 나누어 에이전트 프로그램 개발, 관리의 용이, 네트워크 트래픽 감소, 네트워크 병목현상 해결, 네트워크 오버헤드 감소 등의 효과를 가져온다.

  • PDF

교통 영상에서 은닉 마르코프 모델을 이용한 차량 분할 기법 (Vehicle Segmentation Scheme Based on the Hidden Markov Model in Traffic Sequence)

  • 이대호;박영태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.850-852
    • /
    • 2005
  • 본 논문에서는 교통 영상에서 실시간으로 차량을 검출하는 새로운 기법을 소개한다. 차량의 검출을 위하여 구배도의 방향 정보를 사용하며 차량 영역의 정확한 분할을 위하여 은닉 마르코프 모델을 사용한다. 구배도 방향정보를 이용하므로 그림자 영역의 영향을 줄일 수 있으며 은닉 마르코프 모델을 이용하므로 배경과 비슷한 차량과 근접한 차량의 분리가 가능하다. 따라서 저해상도의 교 통 영상에서 다양한 기상 조건, 그림자의 존재와 교통 상황에 강건한 검출 결과를 나타낸다.

  • PDF