Proceedings of the Korean Statistical Society Conference
/
2002.11a
/
pp.169-174
/
2002
본 연구는 k개 지수분포 모수들의 기하평균에 대한 베이지안추정 방법을 제시하였다. 이를 위해 Tibshirani가 제안한 직교변환법으로 비정보적 사전확률분포를 도출하여 모수들의 결합사후확률분포를 유도해 내었으며, 이 분포 하에서 가중 몬테칼로 방법을 사용하여 기하평균을 추정하는 절차를 제안하였다. 모의실험과 실제자료의 예를 통해 제안된 베이지안 추정의 유효성 및 효용성을 보였으며, 본 연구에서 제안한 사전확률분포가 전통적인 포함확률을 기준으로 볼 때, Jeffrey의 사전확률분포 보다 더 유효한 추정을 함을 보였다.
통계적 절리모델링에서 가장 불확실성이 큰 부분이 절리의 길이분포를 추정하는 것이다. 절리선 길이 분포의 추정에서 이제까지는 주로 조사선 조사(scanline survey)를 통한 절리선 반길이 분포를 이용하여 왔다. 이 연구에서는 포이송 디스크 절리모델에 대하여 보다 정밀도가 높은 절리선 길이 분포 추정방법을 찾기 위하여 조사창 조사를 이용하였다. 직사각형 및 원형 조사창에 대하여 양쪽 끝이 조사창 내부에 존재하는 절리선인 양끝내포선의 길이 분포와 한쪽 끝만이 존재하는 한끝내포선의 길이 분포를 이용, 절리선 분포를 추정하는 4개의 관계식을 각각 유도하고 컴퓨터 모의실험을 통하여 유도식의 타당성을 검증한 후 각 유도식을 이용한 절리선 분포의 추정오차를 비교하였다. 또한 절리선 분포로부터 절리직경분포를 계산하는 수치적 해를 유도하고 컴퓨터 모의시험을 통해 수치적 해에 대한 타당성을 검증하였다. 이 연구에서 제시한 조사창 조사를 이용한 절리 길이의 추정방법은 앞으로 절리모델링 분야에서 적용성이 높을 것으로 판단된다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.451-453
/
2001
본 논문에서는 향상된 AR 비디오 시스템을 위하여 장면내의 객체에 대한 그림자 모양 안쪽의 광휘 분포로부터 실제장면의 조명 분포를 추정하기 위한 새로운 메소드를 설명한다. 장면의 조명 분포는 확장된 빛의 근원에 대한 이산 샘플링에 의해 근사화되었고, 장면에 대한 조명 분포는 그림자 모양 안쪽의 광휘 분포로부터 장면내의 다른 객체 위에 알려진 모양의 객체에 의해 추정되었다. 그림자 안쪽 표면에 대한 반사 특성 대신에, 장면에 대한 조명 분포와 표면에 대한 반사 특성을 동시에 추정하는 반복적인 최적화 구조를 기반으로 한다. 또한, 장면에 대한 조명분포의 적응적 샘플링 방법을 소개한다. 전체적인 조명 분포에 대한 균일한 분리를 사용하기보다는 이전의 반복 지점에서 조명 분포에 대한 샘플링 방향을 적응적으로 증가한다. 적응적인 샘플링 구조를 사용한 추정방법은 보다 소수의 샘플링을 사용하여 전체적인 조명을 보다 효율적으로 추정할 수 있었다. 제안된 메소드는 복잡한 조명 환경아래라도 조명 분포를 추정하는데 매우 효율적이다.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.464-464
/
2012
수문분야에 있어서 빈도해석의 목적은 특정 재현기간에 대한 발생 가능한 수문량의 규모를 파악하는데 있으며, 빈도해석의 정확도는 적합한 확률분포모형의 선택과 매개변수 추정방법에 의존하게 된다. 일반적으로 각 확률분포모형의 특성을 대표하는 매개변수를 추정하기 위해서는 모멘트 방법, 확률가중 모멘트 방법, 최대우도법 등을 이용하게 된다. 모멘트 방법에 의한 매개변수 추정은 해를 구하기 위한 과정이 단순한 반면, 비대칭형의 왜곡된 분포를 갖는 자료들에 대해서는 부정확한 결과를 나타내게 된다. 확률가중 모멘트 방법은 표본의 크기가 작거나 왜곡된 자료일 경우에도 비교적 안정적인 결과를 제공하는 반면, 확률 가중치가 정수로만 제한되는 단점을 갖고 있다. 그리고 대수 우도함수를 이용하여 매개변수를 추정하게 되는 최우도법은 가장 효율적인 매개변수 추정치를 얻을 수 있는 것으로 알려져 있으나, 비선형 연립방정식으로 표현되는 해를 구하기 위해서는 Newton-Raphson 방법을 사용하는 등 절차가 복잡하며, 때로는 수렴이 되지 않아 해룰 구하지 못하는 경우가 발생되게 된다. 이에 반해, 최근의 Genetic Algorithm, Ant Colony Optimization 및 Simulated Annealing과 같은 Meta-Heuristic Algorithm들은 복잡합 공학적 최적화 문제 있어서 효율적인 대안으로 주목받고 있으며, Hassanzadeh et al.(2011)에 의해 수문학적 빈도해석을 위한 매개변수 추정에 있어서도 그 적용성이 검증된바 있다. 본 연구의 목적은 연 최대강수 자료의 빈도해석에 적용되는 확률분포모형들의 매개변수 추정을 위해 Meta-Heuristic Algorithm을 적용하고자 함에 있다. 따라서 본 연구에서는 매개변수 추정을 위한 방법으로 Genetic Algorithm 및 Harmony Search를 적용하였고, 그 결과를 최우도법에 의한 결과와 비교하였다. GEV 분포를 이용하여 Simulation Test를 수행한 결과 Genetic Algorithm을 이용하여 추정된 매개변수들은 최우도법에 의한 결과들과 비교적 유사한 분포를 나타내었으나 과도한 계산시간이 요구되는 것으로 나타났다. 하지만 Harmony Search를 이용하여 추정된 매개변수들은 최우도법에 의한 결과들과 유사한 분포를 나타내었을 뿐만 아니라 계산시간 또한 매우 짧은 것으로 나타났다. 또한 국내 74개소의 강우관측소 자료와 Gamma, Log-normal, GEV 및 Gumbel 분포를 이용한 실증연구에 있어서도 Harmony Search를 이용한 매개변수 추정은 효율적인 매개 변수 추정치를 제공하는 것으로 나타났다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.194-194
/
2020
본 연구에서는 수평반사도를 이용한 강우추정 관계식을 유효성 측면에서 재평가하였다. 이를 위해, 강우추정 관계식의 유도과정을 다시 살펴보고, 관측자료를 가지고 강우입자분포의 매개변수를 추정할 수 있도록 식의 형태를 변환하였다. 이 식을 이용하여 비슬산 레이더에서 관측된 반사도-강우강도의 쌍 자료에 대한 강우입자분포 매개변수를 추정하였다. 마지막으로 추정된 매개변수 대푯값을 다시 강우추정 관계식 유도에 사용하였다. 이렇게 결정된 강우추정 관계식이 관측된 수평반사도-강우강도 자료를 얼마나 잘 대표하는지를 평가하였으며, 그 결과, 레이더 반사도가 작아지면 작아질수록 강우추정 관계식의 이론적 배경과 관측자료의 괴리가 커지는 것으로 나타났다. 또한 강우입자분포를 지수분포로 가정한 형태의 강우추정 관계식이 모든 반사도 구간에서 유의하지 않을 수 있다는 것을 확인하였다.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.697-700
/
2006
저수시 하천유량(Low Streamflow)의 추정은 하천의 수질관리, 용수공급계획, 댐 방류계획등의 수자원관리에 있어서 매우 중요한 부분이다. 이러한 중요성에 따라 Vogel과 Kroll (1989)은 저수시 하천유량을 추정하기 위한 여러 가지 확률분포함수를 제안하였다. 가장 흔히 제안되어지는 이변수 확률분포(Two-Parameter Distribution)로는 Lognormal 분포와 Weibull 분포가 있으며 이와 더불어 Three-Parameter Lognormal, Three-Parameter Weibull, Log Person Type Ⅲ 분포도 널리 사용되어진다. 그러나 이러한 여러 가지 확률 분포함수 중에서 가장 적절한 확률분포의 선택은 저수시 하천유량의 물리적인 측면과는 상관없이 주로 적합도(Gooness of Fit)에 기인된 통계치에 의해서만 결정되기도 하는데 이러한 경우 잘못된 가정을 받아들이는 확률이 높아짐에 따라 추정결과의 신뢰성(Reliability)을 감소시킬 수 있다. 이러한 문제점을 극복하기 위해서 Onoz와 Bayazit (2001)는 Recession Curve를 지수함수로 가정하고 최대 갈수 기간의 길이(Maximum Dry Period Length)의 확률에 대한 이론적인 결과치들을 사용하여 Weibull 분포의 특정한 경우에 해당되어지는 Power 분포를 유도하였으며 유도된 Power 분포의 매개변수를 추정하기 위하여 L-Moment 방법을 사용하였다. 또한 Onoz와 Bayazit (2001) 작은 유출량에서 확률분포와 잘 맞지 않는 경우 작은 유출량값에 작은 가중치를 부여하여 확률분포에 대한 영향을 줄이는 방법인 LL-Moment 방법을 제안하였다. 본 연구에서는 낙동강 유역의 1번부터 5번 소유역에 대해 SSARR 모형을 이용하여 모의한 유출량을 이용하여 Weibull 분포, L-Moment방법에 의해 추정된 매개변수를 사용한 Power 분포, LL-Moment 방법에 의해 추정된 매개변수를 사용한 Power 분포를 적용하였으며 이들 분포의 적합도를 PPCC Test를 사용하여 평가해봄으로써 낙동강 유역에서의 저수시의 유출량 추정에 대한 Power 분포의 적용성을 판단해 보았다.
The composite lognormal-GPD models (LN-GPD) enjoys both merits from log-normality for the body of distribution and GPD for the thick tailedness of the observation. However, in the estimation perspective, LN-GPD model performs poorly due to numerical instability. Therefore, a two-stage procedure, that estimates threshold first then estimates other parameters later, is a natural method to consider. This paper considers five nonparametric threshold estimation methods widely used in extreme value theory and compares their performance in LN-GPD parameter estimation. A simulation study reveals that simultaneous maximum likelihood estimation performs good in threshold estimation, but very poor in tail index estimation. However, the nonparametric method performs good in tail index estimation, but introduced bias in threshold estimation. Our method is illustrated to the service time of an Israel bank call center and shows that the LN-GPD model fits better than LN or GPD model alone.
Proceedings of the Korean Statistical Society Conference
/
2004.11a
/
pp.271-276
/
2004
이 논문에서는 유한모집단 분포함수에 대한 추정량들을 소개하고, 이론적인 측면과 경험적인 측면으로 비교하였다 분포함수 추정량은 설계기반 특성을 갖는 추정량과 모형기반 특성을 갖는 추정량으로 구분되며, 각각 설계기반 특성과 모형기반 특성을 갖는다. 수치적인 비교를 위하여 분포함수 추정량들을 2000년 인구주택 총 조사의 서울 가구수와 가구원수 데이터에 적합하여 비교하였다.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.45-45
/
2017
상이한 자연현상으로 발생된 자료들은 때때로 통계적으로 다른 특성을 가지는 경우가 있다. 이런 자료들은 다른 두 개 이상의 모집단에서 자료가 발생한 것으로 가정할 수 가 있다. 기존에 널리 사용되어온 분포형 모형의 경우 단일한 모집단으로부터 자료가 발생한다는 가정하에서 개발된 모형들로 위에서 언급한 자료들을 적절히 모의할 수 없다. 이런 상이한 모집단에서 발생된 자료를 모형화 하기 위해서 혼합분포모형(mixture distribution)이 개발되었다. 홍수나 가뭄 등과 같은 극치 사상의 경우 다양한 자연현상들로부터 발생하기에 혼합분포모형을 적용할 경우 보다 정확한 모의가 가능하다. 혼합분포모형은 두 개 이상의 비혼합분포모형들을 가중합하여 만들어진다. 혼합 분포모형의 형태로 인하여 기존의 분포형 모형의 매개변수 추정 모형으로 널리 사용되던 최우도법 (maximum likelihood method), 모멘트법(method of moment), 확률가중모멘트법 (probability weighted moment method) 등을 이용하여 혼합분포모형의 매개변수를 추정하는 것이 용이 하지 않다. 혼합분포모형의 매개변수 추정 방법으로는 Expectation-Maximization (EM) 알고리즘, Meta-Heuristic Maximum Likelihood (MHML) 방법, Markov Chain Monte Carlo (MCMC) 방법 등이 적용되고 있다. 현재까지 수자원 분야에서 사용되는 극치 자료를 혼합분포모형을 이용하여 모의할 때 매개변수 추정방법에 따른 특성에 대한 연구가 진행되지 않았다. 본 연구에서는 우리나라 연최대강우량 자료를 이용하여 혼합분포모형의 매개변수 추정방법 (EM 알고리즘, MHML 방법, MCMC 방법) 들의 특성들을 비교 분석하였다. 혼합분포모형으로는 Gumbel-Gumbel 혼합분포 모형을 적용하였다. 본 연구의 결과는 향후 혼합분포모형을 이용한 연구에 좋은 기초자료로 사용될 수 있을 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.180-180
/
2019
본 연구의 목표는 돌발홍수 예 경보시스템(Flash Flood Warning System, FFWS)의 효용성 극대화를 위한 레이더 자료의 품질향상 기법을 개발하는 것이다. 지금까지 사용되어온 레이더 자료의 품질향상 기법들은 모두 자료의 평균값에 맞추어져 개발되었다. 그러나 돌발홍수 예 경보시스템에서 사용되는 강우강도 임계값은 평균값과 큰 차이가 난다. 따라서 레이더 자료를 이용하여 추정하는 큰 강우강도의 신뢰도는 떨어지게 된다. 이에 본 연구에서는 돌발홍수 예 경보시스템에 사용되는 목표 강우량에 대한 강우추정 관계식의 매개변수 추정 기법을 개발하고자 한다. 이를 위해 비슬산 레이더 반사도 자료와 비슬산 레이더 관측반경 내 위치한 AWS 지점의 강우자료를 이용하였다. 먼저, 강수입자분포(Drop Size Distribution, DSD)를 지수분포로 가정하여 유도한 레이더 강우추정 관계식을 재검토하였다. 다음으로 관측된 비슬산 레이더 반사도 자료를 10dBZ 단위로 구분하여 레이더 반사도 구간별로 레이더 반사도 자료와 강우자료 쌍에 대한 DSD 매개변수를 산정하였다. DSD 매개변수를 산정하기 위해 비슬산 레이더 반사도 자료와 AWS 지점의 강우자료를 지수분포로 가정하여 유도한 강우추정 관계식에 적용하였다. 다음으로 목표 강우량에 대한 강우추정 관계식의 매개변수 추정을 위해 레이더 반사도 구간별로 DSD 매개변수의 대푯값을 결정하였다. 마지막으로 지수분포로 가정하여 유도한 레이더 강우추정 관계식에 레이더 반사도 구간별 DSD 매개변수의 대푯값을 적용함으로써 목표 강우량에 대한 강우추정 관계식의 매개변수를 추정하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.