• Title/Summary/Keyword: 분절제작

Search Result 40, Processing Time 0.027 seconds

Experimental Study on the Static Behavior of the Spliced PSC Box Girder (분절 PSC 박스거더의 정적거동에 관한 실험적 연구)

  • Chung, Won-Seok;Kim, Jae-Hueng;Chung, Dae-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.433-439
    • /
    • 2007
  • The main objective of the paper is to investigate the static behavior of a prestressed concrete (PSC) girder that has been spliced with precast box segments. A 20 m long full-scale spliced PSC girder is fabricated and tested to compare its static performance against a monolithic girder. The monolithic girder has the same geometric and material properties with respect to the spliced girder. This includes infernal strain, deflections, neutral axis position, and crack patterns for both girders. The test also consists of monitoring relative displacements occurring across the joints. Both the horizontal displacement (gap) and vertical displacement (sliding) are measured throughout the loading procedure. All results have been compared to those obtained from the monolithic girder. It has been demonstrated that the spliced girder offers close behavior with respect to the monolithic girder up to the crack load. Both girders exhibits ductile flexural failure rather than abrupt shear failure at joints.

An Experimental Study on Structural Behavior of Segmental Joint in Prestressed Composite Girder (프리스트레스트 강합성거더의 분절 접합부 구조거동에 관한 실험적 연구)

  • Lee, Juwon;Ha, Taeyul;Yang, Inwook;Han, Jongwook
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.422-431
    • /
    • 2016
  • This study was evaluated in the performance of the connection according to the details of the concrete casing segment in the prestressed composite girder by fabricating and testing specimens with different segments. A total of four comparative specimens were fabricated by using the variables of general composite girders, reinforcement or non-reinforcement, and details of reinforcing bars in the segments so as to evaluate the structural behavior of steel girders. In addition, the possibility of non-cracking grade design of segmented composite girders as well as the effects of stiffness and strength according to the loop connection types after cracking were analyzed, and the appropriateness of the crack width control both the embedded steel plate and the concrete surface were evaluated.

Experimental Study on Static Behavior of Laterally Strengthened Spliced Prestressed Concrete Girder using Bending Moment Connector (휨연결재에 의해 횡방향으로 보강된 분절 프리스트레스트 거더의 정적거동에 관한 실험적 연구)

  • Kim, Jae Heung;Kim, Jang-Ho Jay;Kim, Sung Bae;Yi, Na Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.287-295
    • /
    • 2010
  • The main purpose of this study is to investigate the static behavior of spliced prestressed concrete girder with bending moment connector and lateral prestressing. Four (4) spliced girders and one (1) monolithic girder had been fabricated and tested to compare their static behaviors. Same geometry and materials are used to fabricate these spliced and monolithic girders. A monolithic girder and one (1) spliced girder without lateral bending connector are used as control specimens to estimate the performance of three (3) spliced girders with lateral bending connector. Deflections at the middle of girders have been measured for evaluation. Also, strains of the concrete at the middle of span and connection points have been measured. It was found from the result that laterally strengthened spliced girders showed improved ultimate strength but less stiffness compared to the monolithic girder at the ultimate state. Laterally strengthened spliced girder also showed improved strength as well as improved stiffness compared to the spliced girder without lateral strengthening.

An Experimental Study on Behavior of Multi-Spliced Girder with Dry Joint (건식접합부를 갖는 Multi Spliced 주형의 거동에 관한 실험적 연구)

  • Kim Kwang-Soo;Seo Bong-Won;Park Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.229-236
    • /
    • 2005
  • To cope with increasing requirements of cost reduction, labor saving, and rapid construction, the purpose of this study is to investigate the structural behavior of PSC monolithic and spliced girders. Three tests were conducted on reduced-scale girder specimens having same type. This paper presents the result of experimental studies on the load-deflection behavior in which different joint and amount of tendon as major variables were investigated. The first one used a monolithic girder was arranged with three tendons. The second one used a spliced girder was joined with three tendons after producing five segments. And the third girder was produced in same conditions with the second girder and arranged with additional tendons. The experimental results show the difference of behavior between monolithic and spliced girders.

A Two-Demensional Nonlinear Analysis of Precast Segmental PSC-I Girder with Dry Joint (건식접합부를 갖는 프리캐스트 세그먼트 PSC-I형 거더의 2차원 비선형해석)

  • Kim, Kwang-Soo;Kim, Tae-Wan;Park, Jun-Myung;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.99-106
    • /
    • 2007
  • To satisfy with the increased requirements of cost reduction, labor saving, and rapid construction, the purpose of this study is to investigate the structural behavior of PSC monolithic and spliced girders. Three tests were conducted on small-scale girder specimens. This paper presents the result of experimental studies in terms of the load-deflection behavior. Different joint type and tendon amount were investigated as major variables. The monolithic girder was arranged with three tendons. The spliced girder consisted of five segments connected by three tendons. In addition, five-segmented girders connected by more than three tendons were built to examine the effect of the tendon amount. The experimental results show the difference of behavior between monolithic and spliced girders. Moreover, nonlinear finite element method analysis was utilized to verify the experimental result.

Flexural Behavior of Precast PSC Segmental I Girder (Precast PSC-Segmental I형 거더의 휨거동에 관한 연구)

  • Hong, Sung Nam;Kim, Kwang Soo;Park, Sun Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.421-428
    • /
    • 2006
  • This study was performed by using experiment to minimize behavior difference of Monolithic and segmental Girder and to prove the design concept of the PSI (Precast PSC-Segmental I Grider). A full scale girder test was performed in four different cases, the monolithic girder, the segmental girder type-1, the segmental girder type-2 and the segmental girder type-3. The monolithic girder that was produced in one body 25 m span and the segmental girder that was jointed 5-sliced 5 m segment. The girder was built by as one body prestressing the tendons after manufacturing the segmental girder, and second prestressing after the casting of the slab concrete. The test result shows that the measured values were almost same or slightly bigger than the theoretical values which means that the PSI girder bridges concept came out to be reliable.

Behavior of Segmented Composites Using General Mortar under Static and Impact Loading (일반 모르타르를 이용한 분절 복합체의 정하중 및 충격하중 실험)

  • Kim, Youl-Hee;Min, Kyung-Hwan;Lee, Jae-Seong;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.33-36
    • /
    • 2008
  • It is generally known that a shell in the form of layered structures stacked up thin elements by organic adhesives has high resistance capacity against static and impact loading. The complex materials such as these diversified layered structures are more reliable and efficient to the impact loading than the single material. In this study, the segmented composites in the shape of a beam were made, using mortar and concrete block and tested under static and impact loading in order to develop the complex materials in the form of layered structures as the segmented composites to resist impact loading. And it compared to the normal concrete beams having the same compressive strength to evaluate the differences in their performance and failure modes.

  • PDF

New Power MOSFET Employing Segmented Trench Body Contact for improving the Avalanche Energy (항복 에너지 향상을 위해 분절된 트렌치 바디 접촉 구조를 이용한 새로운 전력 MOSFET)

  • Kim, Young-Shil;Choi, Young-Hwan;Lim, Ji-Young;Cho, Kyu-Heon;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1205-1206
    • /
    • 2008
  • 본 실험에서는 CMOS 공정에서 사용하는 실리콘 트렌치 공정을 이용하여 분절된 트렌치 바디 접촉구조를 형성, 60 V급 전력 MOSFET 소자를 제작하였으며, 결과 소자의 면적을 증가시키지 않고도 제어되지 않은 유도성 스위칭 (UIS) 상황에서 낮은 전도 손실과 높은 항복 에너지 ($E_{AS}$)를 구현하였다. 분절된 트렌치 접촉구조는 소자의 사태 파괴시 n+ 소스 아래의 정공전류를 억제한다. 이는 트렌치 밑 부분에서부터 이온화 충돌이 일어나기 때문이며, 이는 기생 NPN 바이폴라 트랜지스터의 활성화를 억제하여 항복 에너지를 증가시킨다. 기존 소자의 항복 전압은 69.4 V이고 제안된 소자의 항복 전압은 60.4 V로 13% 감소하였지만, 항복 에너지의 경우, 기존소자가 1.84 mJ인데 반하여 제안된 소자는 4.5 mJ로 144 % 증가하였다. 트렌치의 분절 구조는 n+ 소스의 접촉영역을 증가시켜 온 저항을 감소시키며 트렌치 바디 접촉구조와 활성영역의 균일성을 증가시킨다.

  • PDF

Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스 거더의 휨거동)

  • Guo, Qingyong;Han, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.109-116
    • /
    • 2014
  • The flexural behavior test of UHPC segmental box girder which has 160 MPa compressive strength and 15.4 m length was carried out. The effect of steel fibers in combination with reinforcing bars on improving the ductile performance of UHPC box girder was evaluated by comparing the flexural behavior of the UHPC segmental box girders made by the two kinds of mixing portion. The test variables are volume fraction of steel fibers and the arrangement of reinforcing bars. The behavior of UHPC box girder BF2 composed of 1% volume fraction of steel fibers and longitudinal reinforcing bars in web and upper flange with stirrup showed the similar ductile behavior with the girder BF1 composed of 2% volume fraction without stirrup in elastic stress region. But BF1 had the better stiffness and showed the more ductile behavior in inelastic stress region. Segmental interfaces of UHPC box girder have not any crack and slide until the final flexural collapse load.

Design and Full Size Flexural Test of Spliced I-type Prestressed Concrete Bridge Girders Having Holes in the Web (분절형 복부 중공 프리스트레스트 콘크리트 교량 거더의 설계 및 실물크기 휨 실험 분석)

  • Han, Man Yop;Choi, Sokhwan;Jeon, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.235-249
    • /
    • 2011
  • A new form of I-type PSC bridge girder, which has hole in the web, is proposed in this paper. Three different concepts were combined and implemented in the design. First of all, a girder was precast at a manufacturing plant as divided pieces and assembled at the construction site using post-tensioning method, and the construction period at the site will be reduced dramatically. In this way, the quality of concrete can be assured at the manufacturing factory and concrete curing can be well controlled, and the spliced girder segments can be moved to the construction site without a transportation problem. Secondly, a numerous number of holes was made in the web of the girder. This reduces the self-weight of the girder. But more important thing related to the holes is that about half of the total anchorages can be moved from the girder ends into individual holes. The magnitude of negative moment developed at girder ends will be reduced. Also, since the longitudinal compressive stresses are reduced at ends, thick end diaphragm is not necessary. Thirdly, Prestressing force was introduced into the member through multiple stages. This concept of multi-stage prestressing method overcomes the prestressing force limit restrained by the allowable stresses at each loading stage, and maximizes the magnitude of applicable prestressing force. It makes the girder longer and shallower. Two 50 meter long full scale girders were fabricated and tested. One of them was non-spliced, or monolithic girder, made as one piece from the beginning, and the other one was assembled using post-tensioning method from five pieces of segments. It was found from the result that monolithic and spliced girder show similar load-deflection relationships and crack patterns. Girders satisfied specific girder design specification in flexural strength, deflection, and live load deflection control limit. Both spliced and monolithic holed web post-tensioned girders can be used to achieve span lengths of more than 50m with the girder height of 2 m.