• Title/Summary/Keyword: 분자 마커

Search Result 262, Processing Time 0.017 seconds

Gene Expression of Detoxification Enzymes in Tenebrio molitor after Fungicide Captan Exposure (살진균제인 캡탄 처리 후 갈색거저리의 해독효소 유전자 발현)

  • Jang, Ho am;Baek, Hyoung-Seon;Kim, Bo Bae;Kojour, Maryam Ali Mohammadie;Patnaik, Bharat Bhusan;Jo, Yong Hun;Han, Yeon Soo
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.155-163
    • /
    • 2022
  • The application of fungicides is indispensable to global food security, and their use has increased in recent times. Fungicides, directly or indirectly, have impacted insects, leading to genetic and molecular-level changes. Various detoxification mechanisms allow insects to eliminate reactive oxygen species (ROS) toxicity induced by agrochemicals including fungicides. In the present study, we analyzed the mRNA expression levels of detoxifying enzymes in Tenebrio molitor larvae following exposure to non-lethal doses (0.2, 2, and 20 ㎍/µL) of a fungicide captan. Transcripts of peroxidases (POXs), catalases (CATs), superoxide dismutases (SODs), and glutathione-s-transferases (GSTs) were screened from the T. molitor transcriptome database. RT-qPCR analysis showed that TmPOX5 mRNA increased significantly 24 h post-captan exposure. A similar increase was noticed for TmSOD4 mRNA 3 h post-captan exposure. Moreover, the expression of TmCAT2 mRNA increased significantly 24 h post-treatment with 2 ㎍/µL captan. TmGST1 and TmGST3 mRNA expression also increased noticeably after captan exposure. Taken together, these results suggest that TmPOX5 and TmSOD4 mRNA can be used as biomarkers or xenobiotics sensors for captan exposure in T. molitor, while other detoxifying enzymes showed differential expression.

The Induction of ROS-dependent Autophagy by Particulate Matter 2.5 and Hydrogen Peroxide in Human Lung Epithelial A549 Cells (미세먼지와 산화적 스트레스에 의한 인간 폐 상피 A549 세포에의 ROS 의존적 자가포식 유도)

  • Park, Beom Su;Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.310-317
    • /
    • 2022
  • Recently, interest in the harmful factors of particulate matter (PM), a major component of air pollution, has been increasing. In particular, PM2.5 with a diameter of less than 2.5 ㎛ is well known to induce oxidative stress accompanied by autophagy in human lung epithelial cells. However, studies on whether PM2.5 increases autophagy under oxidative stress and whether this process is reactive oxygen species (ROS)-dependent are insufficient. Therefore, in this study, we investigated whether PM2.5 promotes autophagy through the generation of ROS in human alveolar epithelial A594 cells. According to our results, cells co-treated with PM2.5 and hydrogen peroxide (H2O2) showed a lower cell viability than cells treated with each alone, which was associated with increased total and mitochondrial ROS production. The co-treatment of PM2.5 and H2O2 also increased autophagy induction, which was confirmed through Cyto-ID staining, and the expression of autophagy biomarker proteins increased. However, when ROS generation was artificially blocked by N-acetyl-L-cysteine pretreatment, the reduction in cell viability and induction of autophagy by PM2.5 and H2O2 co-treatment were markedly attenuated. Therefore, the present results suggest that PM2.5-induced ROS generation may play a critical role in autophagy induction in A549 cells.