• Title/Summary/Keyword: 분자표현학습

Search Result 13, Processing Time 0.027 seconds

Molecular Property Prediction with Deep-learning and Pretraining Strategy (사전학습 전략과 딥러닝을 활용한 분자의 특성 예측)

  • Lee, Seungbeom;Kim, Jiye;Kim, Dongwoo;Park, Jaesik;Ahn, Sungsoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.63-66
    • /
    • 2022
  • 본 논문에서는 분자의 특성을 정확하게 예측하기 위해 효과적인 사전학습(pretraining) 전략과 트랜스포머(Transformer) 모델을 활용한 방법을 제시한다. 딥러닝을 활용한 분자의 성능을 예측하는 연구는 그동안 레이블이 부족한 분자데이터의 특성에 의해 학습 때 사용된 데이터이외의 분자데이터에 대해 일반화 능력이 떨어지는 어려움을 겪었다. 이 논문에서 제시한 모델은 사전학습(pretraining)을 수행할 때 자기지도학습(self-supervised training)을 사용하여 부족한 레이블에 의한 문제점을 피할 수 있다. 대규모 분자 데이터셋으로부터 학습된 이 모델은 4가지 다운스트림 데이터셋에 대해 모두 우수한 성능을 보여주어 일반화 성능이 뛰어나며 효과적인 분자표현을 얻을 수 있음을 보인다.

  • PDF

Version Space Learning with DNA Molecules (DNA 분자를 이용한 Version Space 학습)

  • 임희웅;장해만;채영규;유석인;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.361-363
    • /
    • 2002
  • Version space는 목표 개념이 속성 값에 대한 제한조건의 연언(conjunction)으로 표현될 수 있는 귀납적 개념학습에서 가설공간을 표현하기 위해 사용된다. Version space의 크기는 속성 값의 수에 대해 지수적으로 증가하는데, 우리는 DNA 분자를 이용하여 version space를 표현하는 효율적인 방법을 제시한다. 또한 version space를 유지하기 위한 기본 연산과, 이를 DNA 분자를 이용하는 구현 방법이 제시된다. 또한 DNA 분자로 표현된 version space를 활용하여 새로운 example에 대한 분류를 예측하는 방법을 제시한다.

  • PDF

Boosted DNA Computing for Evolutionary Graphical Structure Learning (진화하는 그래프 구조 학습을 위한 부스티드 DNA 컴퓨팅)

  • Seok Ho-Sik;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.265-267
    • /
    • 2005
  • DNA 컴퓨팅은 분자 수준(molecular level)에서 연산을 수행한다. 따라서 일반적인 실리콘 기반의 컴퓨터에서와는 달리, 순차적인 연산 제어를 보장하기 어렵다는 특징이 있다. 그러나 DNA 컴퓨팅은 화학반응에 기초한 연산이기 때문에, 실험자가 의도한 연산을 많은 수의 분자에 동시에 적용할 수 있으므로 실리콘 기반의 컴퓨터와는 비교할 수 없는 병렬 연산을 구현할 수 있다. 병렬 연산을 구현하고자 할 때, 일반적으로 연산에 사용하는 모든 DNA 분자들을 대상으로 연산을 구현할 수도 있다. 그러나 전체가 아닌 일부의 분자들을 상대로 연산을 수행하는 것 역시 가능하며 이 때 자연스러운 방법으로 사용할 수 있는 방법이 배깅(Bagging)이나 부스팅(Boosting)과 같은 앙상블(ensemble) 계열의 학습 방법이다. 일반적인 부스팅과 달리 가중치를 부여하는 것이 아니라 특정 학습자(learner)를 나타내는 분자들을 증폭한다면 가중치를 분자의 양으로 표현하는 것이 가능하므로 분자 수준에서 앙상블 계열의 학습을 구현하는 것이 가능하다. 본 논문에서는 앙상블 계열의 학습 방법 중 특히 부스팅의 효과를 DNA 컴퓨팅에 응용하고자 할 때, 어떤 방법이 가능하며, 표현 과정에서 고려해야 할 사항은 어떠한 것들이 있는지 고려하고자 한다. 본 논문에서는 규모를 사전에 한정할 수 없는 진화 가능한 그래프 구조(evolutionary graph structure)를 학습할 수 있는 방법을 찾아보고자 한다. 진화 가능한 그래프 구조는 기존의 DNA 컴퓨팅 방법으로는 학습할 수 없는 문제이다. 그러나 조합 가능한 수를 사전에 정의할 수 없기 때문에 분자의 수에 상관없이 동일한 연산 시간에 문제를 해결할 수 있는 DNA 컴퓨팅의 장정을 가장 잘 발휘할 수 있는 문제이기도 하다.개별 태스크의 특성에 따른 성능 조절과 태스크의 변화에 따른 빠른 반응을 자랑으로 한다. 본 논문에선 TIB 알고리즘을 리눅스 커널에 구현하여 성능을 평가하였고 그 결과 리눅스에서 사용되는 기존 인터벌 기반의 알고리즘들에 비해 좋은 전력 절감 효과를 얻을 수 있었다.과는 한식 외식업체들이 고객들의 재구매 의도를 높이기 위해서는 한식 외식업체의 서비스요인, 식음료요인, 이벤트 요인 등을 강화함으로써 전반적인 종사원 서비스 품질과 식음료품질을 높이는 전략을 취해야 한다는 것을 시사해주고 있다. 본 연구는 대구 경북소재 한식 외식업체만을 대상으로 하여 연구를 실시하여 연구의 일반화와 한식 외식업체를 이용하는 이용 고객들이 한식 외식업체를 재방문하는 재구매 의도가 발생하는데 있어 발생하는 과정을 설명하는 종단적 연구를 실시하지 못한 한계점을 가지고 있다.아직 산업 디자인이 품질경쟁력에 크게 영향을 미치는 성숙단계에 이르지 못하였음을 의미한다. (2) 제품 디자인에게 영향을 끼치는 유의적인 변수는 연구개발력, 연구개발투자 수준, 혁신활동 수준(5S, TPM, 6Sigma 운동, QC 등)이며, 제품 디자인은 우선 품질경쟁력을 높여 간접적으로 고객만족과 고객 충성을 유발하는 것으로 추정되었다. 상기의 분석결과로부터, 본 연구는 다음과 같은 정책적 함의를 도출하였다. 첫째, 신상품 개발과 혁신을 위한 포괄적인 연구개발 프로젝트를 품질 경쟁력의 주요 결정요인(제품의 기본성능, 신뢰성, 수명(내구성) 및 제품 디자인)과 연계하여 추진해야 할 것이다. 둘째, 기업은 디자인 경영 마인드 제고와 디자인 전문인력 양성을, 대학은 디자인 현장 업무를 통하여 창의력 증진과 기획 및 마케팅 능력 교육을, 정부는 디자인 기술개발 및 디자인 교육지원의 강화를 통하여 각각 디자인 경쟁력$\righta

  • PDF

A machine learning model for the derivation of major molecular descriptor using candidate drug information of diabetes treatment (당뇨병 치료제 후보약물 정보를 이용한 기계 학습 모델과 주요 분자표현자 도출)

  • Namgoong, Youn;Kim, Chang Ouk;Lee, Chang Joon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.23-30
    • /
    • 2019
  • The purpose of this study is to find out the structure of the substance that affects antidiabetic using the candidate drug information for diabetes treatment. A quantitative structure activity relationship model based on machine learning method was constructed and major molecular descriptors were determined for each experimental data variables from coefficient values using a partial least squares algorithm. The results of the analysis of the molecular access system fingerprint data reflecting the candidate drug structure information were higher than those of the in vitro data analysis in terms of goodness-of-fit, and the major molecular expression factors affecting the antidiabetic effect were also variously derived. If the proposed method is applied to the new drug development environment, it is possible to reduce the cost for conducting candidate screening experiment and to shorten the search time for new drug development.

The Effect of Web-Aided Laboratory on Molecular Dynamics of High School Physics Course (고등학교 물리의 기체 분자 운동론에서 웹 활용 모의실험이 학습에 미치는 효과)

  • Roh, Hack-Kie;Kong, Youn-Sig;Park, Chang-Young;Chung, Ki-Soo
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.5
    • /
    • pp.547-554
    • /
    • 2005
  • A developed Web-aided laboratory program visualized invisible gas. In the Web-aided laboratory temperature and pressure were controlled and the resultant findings were presented as types of graphs, disclosed in the form of an analyzed report. A Web-aided laboratory experiment and traditional experiment group(2 classes) were assembled from a farming village co-educational high school and taught the motion of molecule lesson for 2 class hours. Before actual class instruction, to survey learner motivation characteristics, the short-version GALT, the test of attitudes toward science instruction, was administered. After instruction, student learning achievement, TOSRA, and IMMS, were administered to the two groups. To analyze data ANCOVA was administrated. Result found that attitudes towards science instruction did not significantly differ, but learning motivation and achievement were significantly altered.

QSPR model for the boiling point of diverse organic compounds with applicability domain (다양한 유기화합물의 비등점 예측을 위한 QSPR 모델 및 이의 적용구역)

  • Shin, Seong Eun;Cha, Ji Young;Kim, Kwang-Yon;No, Kyoung Tai
    • Analytical Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.270-277
    • /
    • 2015
  • Boiling point (BP) is one of the most fundamental physicochemical properties of organic compounds to characterize and identify the thermal characteristics of target compounds. Previously developed QSPR equations, however, still had some limitation for the specific compounds, like high-energy molecules, mainly because of the lack of experimental data and less coverage. A large BP dataset of 5,923 solid organic compounds was finally secured in this study, after dedicated pre-filtration of experimental data from different sources, mostly consisting of compounds not only from common organic molecules but also from some specially used molecules, and those dataset was used to build the new BP prediction model. Various machine learning methods were performed for newly collected data based on meaningful 2D descriptor set. Results of combined check showed acceptable validity and robustness of our models, and consensus approaches of each model were also performed. Applicability domain of BP prediction model was shown based on descriptor of training set.

Memory retrieval with a DNA computing (DNA 연산을 이용한 기억 인출 시뮬레이션)

  • Kim Joon-Shik;Lee Eun-Seok;Noh Yung-Kyun;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.34-36
    • /
    • 2006
  • 본 연구는 특정 사물을 계속 접하면서 그 사물에 대한 기억 강도가 의식적 노력 없이도 점점 강화되는 암묵적 기억 인출과정 associative memory retrieval의 DNA 연산 가능성을 논한다. 예를 들어 한 표적 단어에 대한 노출이 이를 관찰하는 시스템에게 그 단어의 기억 강도를 강화시키는 반면, 그와 유사한 다른 단어는 천천히 감소되고 나머지 가장 다른 단어는 일찍 잊혀지는 현상을 생각할 수 있다. 이들 단어들과 알파벳 철자들을 DNA 염기서열로 표현하고 simulated annealing을 통하여 결합 결과를 얻는다. Ridge regression 형태의 supervised 학습을 통하여 한 가지 표적 단어가 많이 생성되도록 DNA 조각들의 개수 분포를 변화시켜 진행한다. 실험 예로 'tic' 'tac' 'toe' 세 가지 단어를 그 아이템으로 정하여 계속 자극받는 표적 단어의 갯수가 증가함을 DNA annealing 시뮬레이션을 통하여 확인할 수 있다. 또한 'tac' 과 't' 와 'c'를 공유하는 'tic' 의 감소 점도가 't'만을 공유하는 'toe' 보다 느림을 확인할 수 있다. 위의 실험들을 통해 연합기억associative memory의 암묵적 인출과정을 분자 층위에서 표현할 수 있음을 확인 할 수 있다.

  • PDF

De Novo Drug Design Using Self-Attention Based Variational Autoencoder (Self-Attention 기반의 변분 오토인코더를 활용한 신약 디자인)

  • Piao, Shengmin;Choi, Jonghwan;Seo, Sangmin;Kim, Kyeonghun;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • De novo drug design is the process of developing new drugs that can interact with biological targets such as protein receptors. Traditional process of de novo drug design consists of drug candidate discovery and drug development, but it requires a long time of more than 10 years to develop a new drug. Deep learning-based methods are being studied to shorten this period and efficiently find chemical compounds for new drug candidates. Many existing deep learning-based drug design models utilize recurrent neural networks to generate a chemical entity represented by SMILES strings, but due to the disadvantages of the recurrent networks, such as slow training speed and poor understanding of complex molecular formula rules, there is room for improvement. To overcome these shortcomings, we propose a deep learning model for SMILES string generation using variational autoencoders with self-attention mechanism. Our proposed model decreased the training time by 1/26 compared to the latest drug design model, as well as generated valid SMILES more effectively.

Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals (3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발)

  • ChanHyeok Jeong;SangYoun Kim;SungKu Heo;Shahzeb Tariq;MinHyeok Shin;ChangKyoo Yoo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.523-541
    • /
    • 2023
  • As accessibility to 3D printers increases, there is a growing frequency of exposure to chemicals associated with 3D printing. However, research on the toxicity and harmfulness of chemicals generated by 3D printing is insufficient, and the performance of toxicity prediction using in silico techniques is limited due to missing molecular structure data. In this study, quantitative structure-activity relationship (QSAR) model based on data-centric AI approach was developed to predict the toxicity of new 3D printing materials by imputing missing values in molecular descriptors. First, MissForest algorithm was utilized to impute missing values in molecular descriptors of hazardous 3D printing materials. Then, based on four different machine learning models (decision tree, random forest, XGBoost, SVM), a machine learning (ML)-based QSAR model was developed to predict the bioconcentration factor (Log BCF), octanol-air partition coefficient (Log Koa), and partition coefficient (Log P). Furthermore, the reliability of the data-centric QSAR model was validated through the Tree-SHAP (SHapley Additive exPlanations) method, which is one of explainable artificial intelligence (XAI) techniques. The proposed imputation method based on the MissForest enlarged approximately 2.5 times more molecular structure data compared to the existing data. Based on the imputed dataset of molecular descriptor, the developed data-centric QSAR model achieved approximately 73%, 76% and 92% of prediction performance for Log BCF, Log Koa, and Log P, respectively. Lastly, Tree-SHAP analysis demonstrated that the data-centric-based QSAR model achieved high prediction performance for toxicity information by identifying key molecular descriptors highly correlated with toxicity indices. Therefore, the proposed QSAR model based on the data-centric XAI approach can be extended to predict the toxicity of potential pollutants in emerging printing chemicals, chemical process, semiconductor or display process.

QSPR analysis for predicting heat of sublimation of organic compounds (유기화합물의 승화열 예측을 위한 QSPR분석)

  • Park, Yu Sun;Lee, Jong Hyuk;Park, Han Woong;Lee, Sung Kwang
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 2015
  • The heat of sublimation (HOS) is an essential parameter used to resolve environmental problems in the transfer of organic contaminants to the atmosphere and to assess the risk of toxic chemicals. The experimental measurement of the heat of sublimation is time-consuming, expensive, and complicated. In this study, quantitative structural property relationships (QSPR) were used to develop a simple and predictive model for measuring the heat of sublimation of organic compounds. The population-based forward selection method was applied to select an informative subset of descriptors of learning algorithms, such as by using multiple linear regression (MLR) and the support vector machine (SVM) method. Each individual model and consensus model was evaluated by internal validation using the bootstrap method and y-randomization. The predictions of the performance of the external test set were improved by considering their applicability to the domain. Based on the results of the MLR model, we showed that the heat of sublimation was related to dispersion, H-bond, electrostatic forces, and the dipole-dipole interaction between inter-molecules.