• 제목/요약/키워드: 분자표현학습

검색결과 13건 처리시간 0.022초

사전학습 전략과 딥러닝을 활용한 분자의 특성 예측 (Molecular Property Prediction with Deep-learning and Pretraining Strategy)

  • 이승범;김지예;김동우;박재식;안성수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.63-66
    • /
    • 2022
  • 본 논문에서는 분자의 특성을 정확하게 예측하기 위해 효과적인 사전학습(pretraining) 전략과 트랜스포머(Transformer) 모델을 활용한 방법을 제시한다. 딥러닝을 활용한 분자의 성능을 예측하는 연구는 그동안 레이블이 부족한 분자데이터의 특성에 의해 학습 때 사용된 데이터이외의 분자데이터에 대해 일반화 능력이 떨어지는 어려움을 겪었다. 이 논문에서 제시한 모델은 사전학습(pretraining)을 수행할 때 자기지도학습(self-supervised training)을 사용하여 부족한 레이블에 의한 문제점을 피할 수 있다. 대규모 분자 데이터셋으로부터 학습된 이 모델은 4가지 다운스트림 데이터셋에 대해 모두 우수한 성능을 보여주어 일반화 성능이 뛰어나며 효과적인 분자표현을 얻을 수 있음을 보인다.

  • PDF

DNA 분자를 이용한 Version Space 학습 (Version Space Learning with DNA Molecules)

  • 임희웅;장해만;채영규;유석인;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.361-363
    • /
    • 2002
  • Version space는 목표 개념이 속성 값에 대한 제한조건의 연언(conjunction)으로 표현될 수 있는 귀납적 개념학습에서 가설공간을 표현하기 위해 사용된다. Version space의 크기는 속성 값의 수에 대해 지수적으로 증가하는데, 우리는 DNA 분자를 이용하여 version space를 표현하는 효율적인 방법을 제시한다. 또한 version space를 유지하기 위한 기본 연산과, 이를 DNA 분자를 이용하는 구현 방법이 제시된다. 또한 DNA 분자로 표현된 version space를 활용하여 새로운 example에 대한 분류를 예측하는 방법을 제시한다.

  • PDF

진화하는 그래프 구조 학습을 위한 부스티드 DNA 컴퓨팅 (Boosted DNA Computing for Evolutionary Graphical Structure Learning)

  • 석호식;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.265-267
    • /
    • 2005
  • DNA 컴퓨팅은 분자 수준(molecular level)에서 연산을 수행한다. 따라서 일반적인 실리콘 기반의 컴퓨터에서와는 달리, 순차적인 연산 제어를 보장하기 어렵다는 특징이 있다. 그러나 DNA 컴퓨팅은 화학반응에 기초한 연산이기 때문에, 실험자가 의도한 연산을 많은 수의 분자에 동시에 적용할 수 있으므로 실리콘 기반의 컴퓨터와는 비교할 수 없는 병렬 연산을 구현할 수 있다. 병렬 연산을 구현하고자 할 때, 일반적으로 연산에 사용하는 모든 DNA 분자들을 대상으로 연산을 구현할 수도 있다. 그러나 전체가 아닌 일부의 분자들을 상대로 연산을 수행하는 것 역시 가능하며 이 때 자연스러운 방법으로 사용할 수 있는 방법이 배깅(Bagging)이나 부스팅(Boosting)과 같은 앙상블(ensemble) 계열의 학습 방법이다. 일반적인 부스팅과 달리 가중치를 부여하는 것이 아니라 특정 학습자(learner)를 나타내는 분자들을 증폭한다면 가중치를 분자의 양으로 표현하는 것이 가능하므로 분자 수준에서 앙상블 계열의 학습을 구현하는 것이 가능하다. 본 논문에서는 앙상블 계열의 학습 방법 중 특히 부스팅의 효과를 DNA 컴퓨팅에 응용하고자 할 때, 어떤 방법이 가능하며, 표현 과정에서 고려해야 할 사항은 어떠한 것들이 있는지 고려하고자 한다. 본 논문에서는 규모를 사전에 한정할 수 없는 진화 가능한 그래프 구조(evolutionary graph structure)를 학습할 수 있는 방법을 찾아보고자 한다. 진화 가능한 그래프 구조는 기존의 DNA 컴퓨팅 방법으로는 학습할 수 없는 문제이다. 그러나 조합 가능한 수를 사전에 정의할 수 없기 때문에 분자의 수에 상관없이 동일한 연산 시간에 문제를 해결할 수 있는 DNA 컴퓨팅의 장정을 가장 잘 발휘할 수 있는 문제이기도 하다.개별 태스크의 특성에 따른 성능 조절과 태스크의 변화에 따른 빠른 반응을 자랑으로 한다. 본 논문에선 TIB 알고리즘을 리눅스 커널에 구현하여 성능을 평가하였고 그 결과 리눅스에서 사용되는 기존 인터벌 기반의 알고리즘들에 비해 좋은 전력 절감 효과를 얻을 수 있었다.과는 한식 외식업체들이 고객들의 재구매 의도를 높이기 위해서는 한식 외식업체의 서비스요인, 식음료요인, 이벤트 요인 등을 강화함으로써 전반적인 종사원 서비스 품질과 식음료품질을 높이는 전략을 취해야 한다는 것을 시사해주고 있다. 본 연구는 대구 경북소재 한식 외식업체만을 대상으로 하여 연구를 실시하여 연구의 일반화와 한식 외식업체를 이용하는 이용 고객들이 한식 외식업체를 재방문하는 재구매 의도가 발생하는데 있어 발생하는 과정을 설명하는 종단적 연구를 실시하지 못한 한계점을 가지고 있다.아직 산업 디자인이 품질경쟁력에 크게 영향을 미치는 성숙단계에 이르지 못하였음을 의미한다. (2) 제품 디자인에게 영향을 끼치는 유의적인 변수는 연구개발력, 연구개발투자 수준, 혁신활동 수준(5S, TPM, 6Sigma 운동, QC 등)이며, 제품 디자인은 우선 품질경쟁력을 높여 간접적으로 고객만족과 고객 충성을 유발하는 것으로 추정되었다. 상기의 분석결과로부터, 본 연구는 다음과 같은 정책적 함의를 도출하였다. 첫째, 신상품 개발과 혁신을 위한 포괄적인 연구개발 프로젝트를 품질 경쟁력의 주요 결정요인(제품의 기본성능, 신뢰성, 수명(내구성) 및 제품 디자인)과 연계하여 추진해야 할 것이다. 둘째, 기업은 디자인 경영 마인드 제고와 디자인 전문인력 양성을, 대학은 디자인 현장 업무를 통하여 창의력 증진과 기획 및 마케팅 능력 교육을, 정부는 디자인 기술개발 및 디자인 교육지원의 강화를 통하여 각각 디자인 경쟁력$\righta

  • PDF

당뇨병 치료제 후보약물 정보를 이용한 기계 학습 모델과 주요 분자표현자 도출 (A machine learning model for the derivation of major molecular descriptor using candidate drug information of diabetes treatment)

  • 남궁윤;김창욱;이창준
    • 한국융합학회논문지
    • /
    • 제10권3호
    • /
    • pp.23-30
    • /
    • 2019
  • 본 연구는 당뇨병 치료제 후보약물 정보를 이용하여 항당뇨에 영향을 미치는 물질구조를 발견하는데 목적이 있다. 정량적구조 활성관계를 이용한 기계 학습 모델을 만들고 부분최소자승 알고리즘을 통해 실험데이터 별로 결정계수를 파악한 후 변수중요도척도를 활용하여 주요 분자표현자를 도출하였다. 연구 결과, 후보약물 구조정보를 반영한 molecular access system fingerprint 데이터로 분석한 결과가 in vitro 데이터를 이용한 분석 결과보다 설명력이 높았으며, 항당뇨에 영향을 미치는 주요 분자표현자 역시 다양하게 도출할 수 있었다. 제안된 항당뇨 예측 및 주요인자 분석 방법을 활용한다면 유사한 과정을 반복 실험하는 기존 신약개발 방식과는 달리, 많은 비용과 시간이 소요되는 후보물질 스크리닝 (screening) 기간을 최소화하고, 신약개발 탐색기간도 단축하는 계기가 될 수 있을 것으로 기대한다.

고등학교 물리의 기체 분자 운동론에서 웹 활용 모의실험이 학습에 미치는 효과 (The Effect of Web-Aided Laboratory on Molecular Dynamics of High School Physics Course)

  • 노학기;공윤식;박창영;정기수
    • 한국과학교육학회지
    • /
    • 제25권5호
    • /
    • pp.547-554
    • /
    • 2005
  • 본 연구에서는 고등학교 물리교과의 '기체분자 운동론'단원에 대한 개별 웹 활용 모의실험을 개발 적용하여 과학 수업에 대한 태도, 학습동기, 학업성취도에서 미치는 효과를 조별 전통실험 집단과 비교하여 알아보았다. 농촌지역에 위치한 고등학생(조별 전통실험 집단 1학급, 개별 웹 활용 모의실험 집단 1학급)을 대상으로 기체 분자 운동론 단원에 대하여 실험 처치를 2차시동안 실시하였다. 모의 시험은 기체에 대한 실험에서 눈에 보이지 않는 기체를 시각화하여 눈에 보이는 입자로 표현되었고, 온도 및 압력을 자유롭게 변화시킬 수 있도록 개발되었다. 웹 활용 모의실험 집단은 개발된 모의실험을 이용하여 개별적으로 실험하였고, 전통실험 집단은 교과서에 나오는 실험을 4인 1조로 실시하였다. 사전 검사로 사전 과학 수업에 대한 태도 검사, 사전 학습동기(PALS) 검사, 논리적 사고력 검사를 실시하였다. 실험 처치 후 학생들의 사후 과학 수업에 대한 태도 검사, 사후 학습동기(IMMS) 검사, 학업 성취도 검사를 실시하였고, 자료를 수집하여 공변량 분석을 실시하였다. 분석 결과, 개별 웹 활용 모의실험과 조별 전통실험 집단간의 과학 수업에 대한 태도는 유의미한 차이가 없었다. 또한, 학습동기와 학업 성취도는 개별 웹 활용 모의실험 집단이 조별 전통실험 집단에 비해 유의미하게 높았다.

다양한 유기화합물의 비등점 예측을 위한 QSPR 모델 및 이의 적용구역 (QSPR model for the boiling point of diverse organic compounds with applicability domain)

  • 신성은;차지영;김광연;노경태
    • 분석과학
    • /
    • 제28권4호
    • /
    • pp.270-277
    • /
    • 2015
  • 비등점은 유기물의 물리화학적 성질을 특정하는데 있어 매우 근본적 요소 중 하나이다. 그러나 기존의 정량적 구조-물성 상관관계식들은 고에너지 물질 등과 같은 특정 물질 군에 대한 실험값들의 부족 등으로 인해 제한적인 응용성을 가지고 있었다. 본 연구에서는 서로 다른 출처로부터의 5,923개의 비등점 자료를 확보하였으며, 이에는 일반적 유기화합물과 더불어 특수목적을 가지는 분자들을 포함하였고, 이들 수집된 데이터 셋을 이용하여 새로운 비등점 예측모델을 개발하는데 사용하였다. 다양한 학습 방법을 이용하여 새로이 수집된 데이터 셋을 이용한 2차원 분자 표현자에 기반한 비등점 모델을 도출하였다. 개발된 예측모델의 적정성과 견고성을 확인하였고, 훈련 셋의 표현자에 기반한 비등점 예측모델의 적용구역을 도출하였다.

DNA 연산을 이용한 기억 인출 시뮬레이션 (Memory retrieval with a DNA computing)

  • 김준식;이은석;노영균;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.34-36
    • /
    • 2006
  • 본 연구는 특정 사물을 계속 접하면서 그 사물에 대한 기억 강도가 의식적 노력 없이도 점점 강화되는 암묵적 기억 인출과정 associative memory retrieval의 DNA 연산 가능성을 논한다. 예를 들어 한 표적 단어에 대한 노출이 이를 관찰하는 시스템에게 그 단어의 기억 강도를 강화시키는 반면, 그와 유사한 다른 단어는 천천히 감소되고 나머지 가장 다른 단어는 일찍 잊혀지는 현상을 생각할 수 있다. 이들 단어들과 알파벳 철자들을 DNA 염기서열로 표현하고 simulated annealing을 통하여 결합 결과를 얻는다. Ridge regression 형태의 supervised 학습을 통하여 한 가지 표적 단어가 많이 생성되도록 DNA 조각들의 개수 분포를 변화시켜 진행한다. 실험 예로 'tic' 'tac' 'toe' 세 가지 단어를 그 아이템으로 정하여 계속 자극받는 표적 단어의 갯수가 증가함을 DNA annealing 시뮬레이션을 통하여 확인할 수 있다. 또한 'tac' 과 't' 와 'c'를 공유하는 'tic' 의 감소 점도가 't'만을 공유하는 'toe' 보다 느림을 확인할 수 있다. 위의 실험들을 통해 연합기억associative memory의 암묵적 인출과정을 분자 층위에서 표현할 수 있음을 확인 할 수 있다.

  • PDF

Self-Attention 기반의 변분 오토인코더를 활용한 신약 디자인 (De Novo Drug Design Using Self-Attention Based Variational Autoencoder)

  • ;최종환;서상민;김경훈;박상현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권1호
    • /
    • pp.11-18
    • /
    • 2022
  • 신약 디자인은 단백질 수용체와 같은 생물학적 표적과 상호작용할 수 있는 약물 후보물질을 식별하는 과정이다. 전통적인 신약 디자인 연구는 약물 후보 물질 탐색과 약물 개발 단계로 구성되어 있으나, 하나의 신약을 개발하기 위해서는 10년 이상의 장시간이 요구된다. 이러한 기간을 단축하고 효율적으로 신약 후보 물질을 발굴하기 위하여 심층 학습 기반의 방법들이 연구되고 있다. 많은 심층학습 기반의 모델들은 SMILES 문자열로 표현된 화합물을 재귀신경망을 통해 학습 및 생성하고 있으나, 재귀신경망은 훈련시간이 길고 복잡한 분자식의 규칙을 학습시키기 어려운 단점이 있어서 개선의 여지가 남아있다. 본 연구에서는 self-attention과 variational autoencoder를 활용하여 SMILES 문자열을 생성하는 딥러닝 모델을 제안한다. 제안된 모델은 최신 신약 디자인 모델 대비 훈련 시간을 1/26로 단축하는 것뿐만 아니라 유효한 SMILES를 더 많이 생성하는 것을 확인하였다.

3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발 (Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals)

  • 정찬혁;김상윤;허성구;;신민혁;유창규
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.523-541
    • /
    • 2023
  • 3D 프린터의 활용이 높아짐에 따라 발생하는 화학물질에 대한 노출 빈도가 증가하고 있다. 그러나 3D 프린팅 발생 화학물질의 독성 및 유해성에 대한 연구는 미비하며, 분자 구조 데이터의 결측치로 인해 in silico 기법을 사용한 독성예측 연구는 저조한 실정이다. 본 연구에서는 화학물질의 분자구조 정보를 나타내는 주요 분자표현자의 결측치를 보간하여 3D 프린팅의 독성 및 유해성을 예측한 Data-centric QSAR 모델을 개발하였다. 먼저 MissForest 알고리즘을 사용해 3D 프린팅으로 발생되는 유해물질의 분자표현자 결측치를 보완하였으며, 서로 다른 4가지 기계학습 모델(결정트리, 랜덤포레스트, XGBoost, SVM)을 기반으로 Data-centric QSAR 모델을 개발하여 생물 농축 계수(Log BCF)와 옥탄올-공기분배계수(Log Koa), 분배계수(Log P)를 예측하였다. 또한, 설명 가능한 인공지능(XAI) 방법론 중 TreeSHAP (SHapley Additive exPlanations) 기법을 활용하여 Data-centric QSAR 모델의 신뢰성을 입증하였다. MissForest 알고리즘 기반 결측지 보간 기법은, 기존 분자구조 데이터에 비하여 약 2.5배 많은 분자구조 데이터를 확보할 수 있었다. 이를 바탕으로 개발된 Data-centric QSAR 모델의 성능은 Log BCF, Log Koa와 Log P를 각각 73%, 76%, 92% 의 예측 성능으로 예측할 수 있었다. 마지막으로 Tree-SHAP 분석결과 개발된 Data-centric QSAR 모델은 각 독성치와 물리적으로 상관성이 높은 분자표현자를 통하여 선택함을 설명할 수 있었고 독성 정보에 대한 높은 예측 성능을 확보할 수 있었다. 본 연구에서 개발한 방법론은 다른 프린팅 소재나 화학공정, 그리고 반도체/디스플레이 공정에서 발생 가능한 오염물질의 독성 및 인체 위해성 평가에 활용될 수 있을 것으로 사료된다.

유기화합물의 승화열 예측을 위한 QSPR분석 (QSPR analysis for predicting heat of sublimation of organic compounds)

  • 박유선;이종혁;박한웅;이성광
    • 분석과학
    • /
    • 제28권3호
    • /
    • pp.187-195
    • /
    • 2015
  • 승화열은 대기 유기 오염물질의 확산에 관련된 환경적인 문제를 해결하거나, 위험한 화학 물질의 위해성을 평가하는 데에 중요한 변수이다. 하지만 실험적으로 승화열을 측정하려면 많은 시간과 비용이 소모 되며, 그 실험자체도 복잡하고 위험하다. 따라서 본 연구에서는 유기화합물의 승화열을 간단하게 예측하는 모델을 개발하기 위하여 정량적 구조-물성 상관관계 연구를 이용하였다. 군기반 전진선택방법을 적용하여 다중선형회귀방법과 서포트 벡터 머신과 같은 학습방법에 적합한 분자표현자들을 선택하도록 하였다. 개별 모델과 복합모델들은 부스트래핑 방법과 y-임의추출법에 의해 내부검증이 되었다. 외부 테스트 데이터의 예측 성능은 적용범위를 고려하므로서 개선되었다. 다중선형회귀모델에 따르면, 승화열은 분자간의 분산력, 수소결합, 정전기적 상호작용, 쌍극자-쌍극자 상호작용과 관련이 있는 것을 나타낼 수 있었다.