본 논문에서는 분자의 특성을 정확하게 예측하기 위해 효과적인 사전학습(pretraining) 전략과 트랜스포머(Transformer) 모델을 활용한 방법을 제시한다. 딥러닝을 활용한 분자의 성능을 예측하는 연구는 그동안 레이블이 부족한 분자데이터의 특성에 의해 학습 때 사용된 데이터이외의 분자데이터에 대해 일반화 능력이 떨어지는 어려움을 겪었다. 이 논문에서 제시한 모델은 사전학습(pretraining)을 수행할 때 자기지도학습(self-supervised training)을 사용하여 부족한 레이블에 의한 문제점을 피할 수 있다. 대규모 분자 데이터셋으로부터 학습된 이 모델은 4가지 다운스트림 데이터셋에 대해 모두 우수한 성능을 보여주어 일반화 성능이 뛰어나며 효과적인 분자표현을 얻을 수 있음을 보인다.
Version space는 목표 개념이 속성 값에 대한 제한조건의 연언(conjunction)으로 표현될 수 있는 귀납적 개념학습에서 가설공간을 표현하기 위해 사용된다. Version space의 크기는 속성 값의 수에 대해 지수적으로 증가하는데, 우리는 DNA 분자를 이용하여 version space를 표현하는 효율적인 방법을 제시한다. 또한 version space를 유지하기 위한 기본 연산과, 이를 DNA 분자를 이용하는 구현 방법이 제시된다. 또한 DNA 분자로 표현된 version space를 활용하여 새로운 example에 대한 분류를 예측하는 방법을 제시한다.
DNA 컴퓨팅은 분자 수준(molecular level)에서 연산을 수행한다. 따라서 일반적인 실리콘 기반의 컴퓨터에서와는 달리, 순차적인 연산 제어를 보장하기 어렵다는 특징이 있다. 그러나 DNA 컴퓨팅은 화학반응에 기초한 연산이기 때문에, 실험자가 의도한 연산을 많은 수의 분자에 동시에 적용할 수 있으므로 실리콘 기반의 컴퓨터와는 비교할 수 없는 병렬 연산을 구현할 수 있다. 병렬 연산을 구현하고자 할 때, 일반적으로 연산에 사용하는 모든 DNA 분자들을 대상으로 연산을 구현할 수도 있다. 그러나 전체가 아닌 일부의 분자들을 상대로 연산을 수행하는 것 역시 가능하며 이 때 자연스러운 방법으로 사용할 수 있는 방법이 배깅(Bagging)이나 부스팅(Boosting)과 같은 앙상블(ensemble) 계열의 학습 방법이다. 일반적인 부스팅과 달리 가중치를 부여하는 것이 아니라 특정 학습자(learner)를 나타내는 분자들을 증폭한다면 가중치를 분자의 양으로 표현하는 것이 가능하므로 분자 수준에서 앙상블 계열의 학습을 구현하는 것이 가능하다. 본 논문에서는 앙상블 계열의 학습 방법 중 특히 부스팅의 효과를 DNA 컴퓨팅에 응용하고자 할 때, 어떤 방법이 가능하며, 표현 과정에서 고려해야 할 사항은 어떠한 것들이 있는지 고려하고자 한다. 본 논문에서는 규모를 사전에 한정할 수 없는 진화 가능한 그래프 구조(evolutionary graph structure)를 학습할 수 있는 방법을 찾아보고자 한다. 진화 가능한 그래프 구조는 기존의 DNA 컴퓨팅 방법으로는 학습할 수 없는 문제이다. 그러나 조합 가능한 수를 사전에 정의할 수 없기 때문에 분자의 수에 상관없이 동일한 연산 시간에 문제를 해결할 수 있는 DNA 컴퓨팅의 장정을 가장 잘 발휘할 수 있는 문제이기도 하다.개별 태스크의 특성에 따른 성능 조절과 태스크의 변화에 따른 빠른 반응을 자랑으로 한다. 본 논문에선 TIB 알고리즘을 리눅스 커널에 구현하여 성능을 평가하였고 그 결과 리눅스에서 사용되는 기존 인터벌 기반의 알고리즘들에 비해 좋은 전력 절감 효과를 얻을 수 있었다.과는 한식 외식업체들이 고객들의 재구매 의도를 높이기 위해서는 한식 외식업체의 서비스요인, 식음료요인, 이벤트 요인 등을 강화함으로써 전반적인 종사원 서비스 품질과 식음료품질을 높이는 전략을 취해야 한다는 것을 시사해주고 있다. 본 연구는 대구 경북소재 한식 외식업체만을 대상으로 하여 연구를 실시하여 연구의 일반화와 한식 외식업체를 이용하는 이용 고객들이 한식 외식업체를 재방문하는 재구매 의도가 발생하는데 있어 발생하는 과정을 설명하는 종단적 연구를 실시하지 못한 한계점을 가지고 있다.아직 산업 디자인이 품질경쟁력에 크게 영향을 미치는 성숙단계에 이르지 못하였음을 의미한다. (2) 제품 디자인에게 영향을 끼치는 유의적인 변수는 연구개발력, 연구개발투자 수준, 혁신활동 수준(5S, TPM, 6Sigma 운동, QC 등)이며, 제품 디자인은 우선 품질경쟁력을 높여 간접적으로 고객만족과 고객 충성을 유발하는 것으로 추정되었다. 상기의 분석결과로부터, 본 연구는 다음과 같은 정책적 함의를 도출하였다. 첫째, 신상품 개발과 혁신을 위한 포괄적인 연구개발 프로젝트를 품질 경쟁력의 주요 결정요인(제품의 기본성능, 신뢰성, 수명(내구성) 및 제품 디자인)과 연계하여 추진해야 할 것이다. 둘째, 기업은 디자인 경영 마인드 제고와 디자인 전문인력 양성을, 대학은 디자인 현장 업무를 통하여 창의력 증진과 기획 및 마케팅 능력 교육을, 정부는 디자인 기술개발 및 디자인 교육지원의 강화를 통하여 각각 디자인 경쟁력$\righta
본 연구는 당뇨병 치료제 후보약물 정보를 이용하여 항당뇨에 영향을 미치는 물질구조를 발견하는데 목적이 있다. 정량적구조 활성관계를 이용한 기계 학습 모델을 만들고 부분최소자승 알고리즘을 통해 실험데이터 별로 결정계수를 파악한 후 변수중요도척도를 활용하여 주요 분자표현자를 도출하였다. 연구 결과, 후보약물 구조정보를 반영한 molecular access system fingerprint 데이터로 분석한 결과가 in vitro 데이터를 이용한 분석 결과보다 설명력이 높았으며, 항당뇨에 영향을 미치는 주요 분자표현자 역시 다양하게 도출할 수 있었다. 제안된 항당뇨 예측 및 주요인자 분석 방법을 활용한다면 유사한 과정을 반복 실험하는 기존 신약개발 방식과는 달리, 많은 비용과 시간이 소요되는 후보물질 스크리닝 (screening) 기간을 최소화하고, 신약개발 탐색기간도 단축하는 계기가 될 수 있을 것으로 기대한다.
본 연구에서는 고등학교 물리교과의 '기체분자 운동론'단원에 대한 개별 웹 활용 모의실험을 개발 적용하여 과학 수업에 대한 태도, 학습동기, 학업성취도에서 미치는 효과를 조별 전통실험 집단과 비교하여 알아보았다. 농촌지역에 위치한 고등학생(조별 전통실험 집단 1학급, 개별 웹 활용 모의실험 집단 1학급)을 대상으로 기체 분자 운동론 단원에 대하여 실험 처치를 2차시동안 실시하였다. 모의 시험은 기체에 대한 실험에서 눈에 보이지 않는 기체를 시각화하여 눈에 보이는 입자로 표현되었고, 온도 및 압력을 자유롭게 변화시킬 수 있도록 개발되었다. 웹 활용 모의실험 집단은 개발된 모의실험을 이용하여 개별적으로 실험하였고, 전통실험 집단은 교과서에 나오는 실험을 4인 1조로 실시하였다. 사전 검사로 사전 과학 수업에 대한 태도 검사, 사전 학습동기(PALS) 검사, 논리적 사고력 검사를 실시하였다. 실험 처치 후 학생들의 사후 과학 수업에 대한 태도 검사, 사후 학습동기(IMMS) 검사, 학업 성취도 검사를 실시하였고, 자료를 수집하여 공변량 분석을 실시하였다. 분석 결과, 개별 웹 활용 모의실험과 조별 전통실험 집단간의 과학 수업에 대한 태도는 유의미한 차이가 없었다. 또한, 학습동기와 학업 성취도는 개별 웹 활용 모의실험 집단이 조별 전통실험 집단에 비해 유의미하게 높았다.
비등점은 유기물의 물리화학적 성질을 특정하는데 있어 매우 근본적 요소 중 하나이다. 그러나 기존의 정량적 구조-물성 상관관계식들은 고에너지 물질 등과 같은 특정 물질 군에 대한 실험값들의 부족 등으로 인해 제한적인 응용성을 가지고 있었다. 본 연구에서는 서로 다른 출처로부터의 5,923개의 비등점 자료를 확보하였으며, 이에는 일반적 유기화합물과 더불어 특수목적을 가지는 분자들을 포함하였고, 이들 수집된 데이터 셋을 이용하여 새로운 비등점 예측모델을 개발하는데 사용하였다. 다양한 학습 방법을 이용하여 새로이 수집된 데이터 셋을 이용한 2차원 분자 표현자에 기반한 비등점 모델을 도출하였다. 개발된 예측모델의 적정성과 견고성을 확인하였고, 훈련 셋의 표현자에 기반한 비등점 예측모델의 적용구역을 도출하였다.
본 연구는 특정 사물을 계속 접하면서 그 사물에 대한 기억 강도가 의식적 노력 없이도 점점 강화되는 암묵적 기억 인출과정 associative memory retrieval의 DNA 연산 가능성을 논한다. 예를 들어 한 표적 단어에 대한 노출이 이를 관찰하는 시스템에게 그 단어의 기억 강도를 강화시키는 반면, 그와 유사한 다른 단어는 천천히 감소되고 나머지 가장 다른 단어는 일찍 잊혀지는 현상을 생각할 수 있다. 이들 단어들과 알파벳 철자들을 DNA 염기서열로 표현하고 simulated annealing을 통하여 결합 결과를 얻는다. Ridge regression 형태의 supervised 학습을 통하여 한 가지 표적 단어가 많이 생성되도록 DNA 조각들의 개수 분포를 변화시켜 진행한다. 실험 예로 'tic' 'tac' 'toe' 세 가지 단어를 그 아이템으로 정하여 계속 자극받는 표적 단어의 갯수가 증가함을 DNA annealing 시뮬레이션을 통하여 확인할 수 있다. 또한 'tac' 과 't' 와 'c'를 공유하는 'tic' 의 감소 점도가 't'만을 공유하는 'toe' 보다 느림을 확인할 수 있다. 위의 실험들을 통해 연합기억associative memory의 암묵적 인출과정을 분자 층위에서 표현할 수 있음을 확인 할 수 있다.
신약 디자인은 단백질 수용체와 같은 생물학적 표적과 상호작용할 수 있는 약물 후보물질을 식별하는 과정이다. 전통적인 신약 디자인 연구는 약물 후보 물질 탐색과 약물 개발 단계로 구성되어 있으나, 하나의 신약을 개발하기 위해서는 10년 이상의 장시간이 요구된다. 이러한 기간을 단축하고 효율적으로 신약 후보 물질을 발굴하기 위하여 심층 학습 기반의 방법들이 연구되고 있다. 많은 심층학습 기반의 모델들은 SMILES 문자열로 표현된 화합물을 재귀신경망을 통해 학습 및 생성하고 있으나, 재귀신경망은 훈련시간이 길고 복잡한 분자식의 규칙을 학습시키기 어려운 단점이 있어서 개선의 여지가 남아있다. 본 연구에서는 self-attention과 variational autoencoder를 활용하여 SMILES 문자열을 생성하는 딥러닝 모델을 제안한다. 제안된 모델은 최신 신약 디자인 모델 대비 훈련 시간을 1/26로 단축하는 것뿐만 아니라 유효한 SMILES를 더 많이 생성하는 것을 확인하였다.
3D 프린터의 활용이 높아짐에 따라 발생하는 화학물질에 대한 노출 빈도가 증가하고 있다. 그러나 3D 프린팅 발생 화학물질의 독성 및 유해성에 대한 연구는 미비하며, 분자 구조 데이터의 결측치로 인해 in silico 기법을 사용한 독성예측 연구는 저조한 실정이다. 본 연구에서는 화학물질의 분자구조 정보를 나타내는 주요 분자표현자의 결측치를 보간하여 3D 프린팅의 독성 및 유해성을 예측한 Data-centric QSAR 모델을 개발하였다. 먼저 MissForest 알고리즘을 사용해 3D 프린팅으로 발생되는 유해물질의 분자표현자 결측치를 보완하였으며, 서로 다른 4가지 기계학습 모델(결정트리, 랜덤포레스트, XGBoost, SVM)을 기반으로 Data-centric QSAR 모델을 개발하여 생물 농축 계수(Log BCF)와 옥탄올-공기분배계수(Log Koa), 분배계수(Log P)를 예측하였다. 또한, 설명 가능한 인공지능(XAI) 방법론 중 TreeSHAP (SHapley Additive exPlanations) 기법을 활용하여 Data-centric QSAR 모델의 신뢰성을 입증하였다. MissForest 알고리즘 기반 결측지 보간 기법은, 기존 분자구조 데이터에 비하여 약 2.5배 많은 분자구조 데이터를 확보할 수 있었다. 이를 바탕으로 개발된 Data-centric QSAR 모델의 성능은 Log BCF, Log Koa와 Log P를 각각 73%, 76%, 92% 의 예측 성능으로 예측할 수 있었다. 마지막으로 Tree-SHAP 분석결과 개발된 Data-centric QSAR 모델은 각 독성치와 물리적으로 상관성이 높은 분자표현자를 통하여 선택함을 설명할 수 있었고 독성 정보에 대한 높은 예측 성능을 확보할 수 있었다. 본 연구에서 개발한 방법론은 다른 프린팅 소재나 화학공정, 그리고 반도체/디스플레이 공정에서 발생 가능한 오염물질의 독성 및 인체 위해성 평가에 활용될 수 있을 것으로 사료된다.
승화열은 대기 유기 오염물질의 확산에 관련된 환경적인 문제를 해결하거나, 위험한 화학 물질의 위해성을 평가하는 데에 중요한 변수이다. 하지만 실험적으로 승화열을 측정하려면 많은 시간과 비용이 소모 되며, 그 실험자체도 복잡하고 위험하다. 따라서 본 연구에서는 유기화합물의 승화열을 간단하게 예측하는 모델을 개발하기 위하여 정량적 구조-물성 상관관계 연구를 이용하였다. 군기반 전진선택방법을 적용하여 다중선형회귀방법과 서포트 벡터 머신과 같은 학습방법에 적합한 분자표현자들을 선택하도록 하였다. 개별 모델과 복합모델들은 부스트래핑 방법과 y-임의추출법에 의해 내부검증이 되었다. 외부 테스트 데이터의 예측 성능은 적용범위를 고려하므로서 개선되었다. 다중선형회귀모델에 따르면, 승화열은 분자간의 분산력, 수소결합, 정전기적 상호작용, 쌍극자-쌍극자 상호작용과 관련이 있는 것을 나타낼 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.