• Title/Summary/Keyword: 분자량분포

Search Result 379, Processing Time 0.025 seconds

Effect of Ultraviolet Irradiation on Molecular Properties of Ovalbumin (자외선 조사가 Ovalbumin의 분자적 성질에 미치는 영향)

  • Cho, Yong-Sik;Song, Kyung-Bin;Yamada, Koji;Han, Gui-Jung
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.276-280
    • /
    • 2008
  • To elucidate the effects of ultraviolet (UV) irradiation on molecular properties of ovalbumin, the molecular weight profile, secondary structure and tertiary structure of proteins were examined after irradiation by UV with 254 nm wavelength for 4, 8, 16 and 32 hrs, respectively. UV irradiation of protein solution caused the disruption on the native state of protein molecules. SDS-PAGE and gel permeation chromatography indicated that radiation caused initial fragmentation of polypeptide chains and as a result subsequent aggregation due to cross-linking of protein molecules. Circular dichroism (CD) study showed that UV irradiation caused the change on the secondary structure resulting in decrease of helical structure or compact denature on structure of protein depending on irradiation period. Fluorescence spectroscopy indicated that irradiation quenched the emission intensity excited at 280 nm. These results suggest that UV irradiation affect the molecular properties of ovalbumin and may have potential as a means to change the antigenicity of protein allergen.

Structural Analysis of Microphase-separated Aggregates of Polyester/Polyhedral Oligomeric Silsesquioxane Nanocomposite by Laser Light Scattering (레이저 광산란법에 의한 폴리에스터/실세스키옥세인 나노복합재료 응집체의 구조분석)

  • Yu, Young-Chol;Kim, Jang-Kyung;Yoon, Kwan-Han;Park, Il-Hyun
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.461-468
    • /
    • 2007
  • In order to understand the structure of the existing aggregate in the nanocomposite, which has been prepared with polyester and trisilanolisobutyl polyhedral oligomeric silsesquioxane(TBPOSS), laser light scattering(LLS) and SEM-EDS were applied to its 1,1,1,3,3,3-hexafluoro-2-propanol solution and original sample, respectively. Although aggregate particles appeared as spherical shape of the average diameter of 120 nm in SEM image, they were not microgels but almost linear copolymer chains ($M_w=2.3{\times}10^6\;g/mol$) alternating 320 molecules of TBPOSS with polyester subchains. It has been microphase-separated from the matrix polyester due to the difference of chemical composition. As the matrix, polyester chain of $M_w=4.0{\times}10^4\;g/mol$ had averagely 2.5 molecules of TBPOSS per chain. It is also found that about 93% of total TBPOSS molecules existed in matrix phase and the residual 7% in spherically aggregated phase.

Effects of Molecular Weight of Polyethylene Glycol on the Dimensional Stabilization of Wood (Polyethylene Glycol의 분자량(分子量)이 목재(木材)의 치수 안정화(安定化)에 미치는 영향(影響))

  • Cheon, Cheol;Oh, Joung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.71 no.1
    • /
    • pp.14-21
    • /
    • 1985
  • This study was carried out in order to prevent the devaluation of wood itself and wood products causing by anisotropy, hygroscopicity, shrinkage and swelling - properties that wood itself only have, in order to improve utility of wood, by emphasizing the natural beautiful figures of wood, to develop the dimensional stabilization techniques of wood with PEG that it is a cheap, non-toxic and the impregnation treatment is not difficult, on the effects of PEG molecular weights (200, 400, 600, 1000, 1500, 2000, 4000, 6000) and species (Pinus densiflora S. et Z., Larix leptolepis Gordon., Cryptomeria japonica D. Don., Cornus controversa Hemsl., Quercus variabilis Blume., Prunus sargentii Rehder.). The results were as follows; 1) PEG loading showed the maximum value (137.22%, Pinus densiflora, in PEG 400), the others showed that relatively slow decrease. The lower specific gravity, the more polymer loading. 2) Bulking coefficient didn't particularly show the correlation with specific gravity, for the most part, indicated the maximum values in PEG 600, except that the bulking coefficient of Quercus variabilis distributed between the range of 12-18% in PEG 400-2000. In general, the bulking coefficient of hardwood was higher than that of softwood. 3) Although there was more or less an exception according to species, volumetric swelling reduction was the greatest in PEG 400. That is, its value of Cryptomeria japonica was the greatest value with 95.0%, the others indicated more than 80% except for Prunus sargentii, while volumetric swelling reduction was decreased less than 70% as the molecular weight increase more than 1000. 4) The relative effectiveness of hardwood with high specific gravity was outstandingly higher than softwood. In general, the relative effectiveness of low molecular weight PEG was superior to those of high molecular weight PEG except that Quercus variabilis showed more than 1.6 to the total molecular weight range, while it was no significant difference as the molecular weight increase more than 4000. 5) According to the analysis of the results mentioned above, the dimensional stabilization of hardwood was more effective than softwood. Although volumetric swelling reduction was the greatest at a molecular weight of 400. In the view of polymer loading, bulking coefficiency reduction of swelling and relative effectiveness, it is desirable to use the mixture of PEG of molecular weight in the range of 200-1500. To practical use, it is recommended to study about the effects on the mixed ratio on the bulking coefficient, reduction of swelling and relative effectiveness.

  • PDF

Component Proteins and Protease Activities in Excretory-Secretory Product of Sparganum (스파르가눔 분비배설항원의 단백질 봉성 및 단백질분해효소 활성)

  • Cho, Seung-Yull;Chung, Young-Bae;Kong, Yoon
    • Parasites, Hosts and Diseases
    • /
    • v.30 no.3
    • /
    • pp.227-230
    • /
    • 1992
  • Spirometra mansoni plerocercoid (sparganum) was incubated in saline at $4^{\circ}C{\;}or{\;}37^{\circ}C$ up to 100 hours. Protein contests in the excretory$.$secretory product (ESP) were rather constant (mean 7.7 mg of protein/gram of sparganum) in the preparations. Reducing SDS-PAGE of ESP showed similar protein subunit compositions with those in crude extract. Antigenic 36 and 31 kDa Proteins were major bands in ESP. ESP exhibited specific activities of protease(2.9~5.3 units/mg) at pH 6.0 and pH 7.5. Presence of protease activity in ESP may be a supporting evidence that hitherto known cysteiRe protease of sparganum is possibly secreted.

  • PDF

Adsorption Characteristics of Nitrogen in Carbonaceous Micropore Structures with Local Molecular Orientation (국부분자배향의 탄소 미세기공 구조에 대한 질소의 흡착 특성)

  • Seo, Yang Gon
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.249-257
    • /
    • 2022
  • The adsorption equilibria of nitrogen on a region of nanoporous carbonaceous adsorbent with local molecular orientation (LMO) were calculated by grand canonical Monte Carlo simulation at 77.16 K. Regions of LMO of identical size were arranged on a regular lattice with uniform spacing. Microporosity was predominately introduced to the model by removing successive out-of-plane domains from the regions of LMO and tilting pores were generated by tilting the basic structure units. This pore structure is a more realistic model than slit-shaped pores for studying adsorption in nanoporous carbon adsorbents. Their porosities, surface areas, and pore size distributions according to constrained nonlinear optimization were also reported. The adsorption in slit shaped pores was also reported for reference. In the slit shaped pores, a clear hysteresis loop was observed in pores of greater than 5 times the nitrogen molecule size, and in capillary condensation and reverse condensation, evaporation occurred immediately at one pressure. In the LMO pore model, three series of local condensations at the basal slip plane, armchair slip plane and interconnected channel were observed during adsorption at pore sizes greater than about 6 times the nitrogen molecular size. In the hysteresis loop, on the other hand, evaporation occurred at one or two pressures during desorption.

Isolation and Characterization of Humic Acids Present in the Soils at the Vicinity of Domestic Atomic Power Plants(NPPs) (국내 원자력 발전소 주변 토양 휴믹산의 추출 및 특성 규명)

  • Lee, Chang-Hoon;Shin, Hyun-Sang;Chung, Kun-Ho;Cho, Young-Hyun;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.165-172
    • /
    • 2003
  • Humic acids present in the soils at the vicinity of domestic atomic power plants(NPPs), located in Yeongkwang(YK), Uljin(UJ), Kori(KR), Koseong(KS), Wolseong(WS) area were isolated, and characterized using elemental analysis and UV/Vis, IR, CPMAS $^{13}C$ NMR spectroscopic methods. The characteristics were compared with one another and with commercial humic acid (Aldrich Co.). Molecular size distributions of the humic acids were determined using a stirred cell ultrafiltration technique. The results of elemental analysis showed that soil humic acid from UJ contains higher oxygen content than humic acids from KR and KS (O/C ratios: 0.51 (UJHA) us. 0.45(KRHA), 0.43(KSHA)). The molecular size distribution revealed that the soil humic acids of UJ and YK contained a higher percentage of larger molecules of > 30,000 daltons, compared to those of KR and KS. The spectral features obtained from UV/vis., IR and CPMAS $^{13}C$ NMR showed that the aromatic character and oxygen containing functional groups in the humic acids from UJ and YK were relatively higher than those of KR and KS. These results indicate that the soil humic acids from UJ and YK were in a higher degree of humification, which may suggest higher affinity of the humic acids with radionuclides released in the soil environments.

Physical and Chemical Characteristics of Solvent-Insolubles and Solvent-Solubles in Oilsands Bitumen (Oilsands Bitumen의 용매 불용분 및 용해분의 물리.화학적 특성 연구)

  • Kim, Kyoung-Hoon;Jeon, Sang-Goo;Nho, Nam-Sun;Kim, Kwang-Ho;Shin, Dae-Hyun;Lee, Ki-Bong;Park, Hyo-Nam;Han, Myung-Wan
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.38-45
    • /
    • 2008
  • In this work, we investigated the variation of physical and chemical characteristics of solvent-insolubles and solvent-solubles in Canada's Athabasca oil sands by solvent-insolubles experiments. N-Heptane, n-Hexane, and n-Pentane were tested for solvents and asphaltenes were separated from maltenes by using a modified ASTM D 3279 method. Elemental analysis, boiling point distribution (SIMDIS), molecular weight distribution, heavy metal contents, API gravity, viscosity and SARA fractions were measured for thorough samples. The asphaltenes-removed maltenes contained less sulfur and heavy metal amounts and had lower molecular weight than the original bitumen. N-Pentane solvent could lower sulfur and heavy metal amounts, molecular weight, and viscosity of maltenes compared to the other solvents. Eventually, we confirmed that the obtained experimental data could be used as basic informations of bitumen upgrading processes for the production of SCO (synthetic crude oil).

The Characteristics of Particulate PAHs Concentrations at a Roadside in Seoul (서울시 도로변에서 입자상 다환방향족탄화수소의 농도 특성)

  • Lee, Ji-Yi;Kim, Yong-Pyo;Bae, Gwi-Nam;Park, Su-Mi;Jin, Hyun-Chur
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.133-142
    • /
    • 2008
  • Five intensive measurements of particulate PAHs were made at a roadside in Seoul from May 2005 to June 2006. The average concentration of particulate PAHs was $15.1{\pm}10.6ng\;m^{-3}$. The high concentrations of particulate fluoranthene and pyrene were observed in November 2005 due to the influence of the lower ambient temperature. Compared to the previous results at tunnel and ambient sites in Seoul, larger fraction of the high molecular PAH compounds which consist with five or six benzene rings, was observed at a roadside. This might indicate high influence of vehicle emission at a roadside. The distribution of diagnostic ratios for specific PAH compounds indicated that the influence of vehicular emission, especially diesel vehicular emission seems to be high at a roadside.

Effects of Membrane Size and Organic Matter on Membrane Fouling (천연유기물질의 특성과 막의 종류에 따른 막오염 메카니즘 분석)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1046-1054
    • /
    • 2006
  • The raw water DOC contained 39.3% of hydrophilics, 42.9% of hydriophobic, and 17.8% of transphilic. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional group(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The fouling mechanisms on the membrane surface and into its porous structure were analyzed in terms of several kinetic models. In order to analyze the fouling kinetics, the various kinetic models described in this paper were used to fit the experimental results. The kinetic models and kinetic constants obtained for each operation condition. The permeate flux was rapidly declined by simultaneous pore blocking and cake formation. Also, the permeate flux declined with decreasing internal pore size resulted from organic deposition into the membrane pore. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores.

Effect of Organic Melecular Weight and Functional Group on Membrane Fouling (막오염에 미치는 유기물 분자량 분포특성 및 화학적 구조특성)

  • Jung, Chul-Woo;Son, Hee-Jong;Shin, Hyun-Sool;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.669-676
    • /
    • 2007
  • The raw water was fractionated into hydrophobic (HPO), transphilic (TPI), and hydrophilic portions (HPI) using XAD resins. The raw water DOC contains 39% of hydrophilics, 43% of hydrophobics, and 18% of transphilics. When fractionated NOM (natural organic matter) was passed through hydrophilic membrane with 100 kDa, hydrophobic portion (HPO) caused the most fouling and hydrophilic portion (HPI) caused the least fouling. This could be related to size and adsorption capability of organics. Small sized organics would pass through membrane pores, but large sized organics would be attracted to either membrane pores or surface, which led to the fouling. An effect of membrane pore size on membrane fouling is related to the availability of organics at membrane pores. As the pore size became larger, the more organics were transported into the membrane pore. Some organics caused pore blocking, and others caused pore adsorption, which resulted in membrane fouling. Membrane material is also important for membrane fouling. More fouling occurred at hydrophobic membrane than hydrophilic membrane regardless of its pore size. Hydrophobic interaction caused more fouling at hydrophobic membrane.