• Title/Summary/Keyword: 분자계통수

Search Result 62, Processing Time 0.032 seconds

Inference of Gene Phylogenetic Tree based on Decision Tree (결정트리 분류기법 기반 유전자 계통수 추론)

  • 김신석;황부현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.280-282
    • /
    • 2001
  • 분자생물학의 급진적 발전은 현대 계통분류학에 큰 변혁을 가져왔다. 특히 유전의 근원물질인 DNA나 RNA를 분리.조작.분석하는 기술의 발전으로 이를 이용만 계통수 제작은 계통생물학의 중요한 실험방법으로 자리잡고 있다. 그 중 염기서열 비교 방법은 현재 유전자 계통수 제작에 가장 널리 이용되는 방법이다. 하지만 이러만 계통수는 각 객체간의 거리만을 표현하고, 객체군간의 차이는 설명하기 힘들다. 본 연구에서는 염기서열의 상대적인 특징(유사도)을 대신하는 염기서열의 총량과 염기 함량 등을 이용해 새로이 분류 기법 중 결정트리 방법에 적응하고, 종 분류의 유전적 모델을 설계한다. 또한 결정트리의 클래스인 종은 상위 클래스들을 포함하고 있어, 본 논문에서는 기존의 결정트리 분류자를 수정한 단계적 결정트기 분류자를 제안한다.

  • PDF

The Training Data Generation and a Technique of Phylogenetic Tree Generation using Decision Tree (트레이닝 데이터 생성과 의사 결정 트리를 이용한 계통수 생성 방법)

  • Chae, Deok-Jin;Sin, Ye-Ho;Cheon, Tae-Yeong;Go, Heung-Seon;Ryu, Geun-Ho;Hwang, Bu-Hyeon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.6
    • /
    • pp.897-906
    • /
    • 2003
  • The traditional animal phylogenetic tree is to align the body structure of the animal phylums from simple to complex based on the initial development character. Currently, molecular systematics research based on the molecular, it is on the fly, is again estimating prior trend and show the new genealogy and interest of the evolution. In this paper, we generate the training set which is obtained from a DNA sequence ans apply to the classification. We made use of the mitochondrial DNA for the experiment, and then proved the accuracy using the MEGA program which is anaysis program, it is used in the biology field. Although the result of the mining has to proved through biological experiment, it can provede the methodology for the efficient classify and can reduce the time and effort to the experiment.

Molecular Phylogenetic Position of Abbottina springeri (Cypriniformes: Cyprinidae) Based on Nucleotide Sequences of RAG1 Gene (RAG1 유전자의 염기서열에 기초한 왜매치 Abbottina springeri (잉어목, 잉어과)의 분자계통학적 위치)

  • Kim, Keun-Yong;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.22 no.4
    • /
    • pp.273-278
    • /
    • 2010
  • Partial nucleotide sequences of nuclear protein-coding recombination activating gene 1 (RAG1) gene of two Abbottina and five Microphysogobio species residing in Korea were analyzed to elucidate the molecular phylogenetic position of A. springeri Banarescu and Nalbant. In RAG1 tree A. rivularis was clearly separated from the monophyletic lineage composed of A. springeri, Biwia zezera and Microphysogobio species. Within this lineage B. zezera showed sister-group relationship to the monophyletic group composed of A. springeri and five Microphysogobio species. Thus, our phylogenetic tree revealed the polyphyletic nature of two Abbottina species from Korea, which result is well congruent with the previous phyletic assumption based on osteological features. The current classification of Abbottina and Microphysogobio based on morphological criteria, such as the presence or absence of papillae on lips and size of swim bladder with or without encapsulation, does not reflect their true evolutionary history.

The Complete Mitochondrial Genome and Molecular Phylogeny of the Flathead Platycephalus cultellatus Richardson, 1846 from Vietnam (Teleostei; Scorpaeniformes) (베트남 Platycephalus cultellatus Richardson, 1846 (Teleostei; Scorpaeniformes)의 전장 미토콘드리아 유전체와 분자계통)

  • Tran, Biet Thanh;Nguyen, Tu Van;Choi, Youn Hee;Kim, Keun-Yong;Heo, Jung Soo;Kim, Keun-Sik;Ryu, Jung-Hwa;Kim, Kyeong Mi;Yoon, Moongeun
    • Korean Journal of Ichthyology
    • /
    • v.33 no.4
    • /
    • pp.217-225
    • /
    • 2021
  • The family Platycephalidae is a taxonomic group of economically important demersal flathead fishes that predominantly occupy tropical or temperate estuaries and coastal environments of the Indo-Pacific oceans and the Mediterranean Sea. In this study, we for the first time analyzed the complete mitochondrial genome (mitogenome) of the flathead Platycephalus cultellatus Richardson, 1846 from Vietnam by Next Generation Sequencing method. Its mitogenome was 16,641 bp in total length, comprising 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes. The gene composition and order of the mitogenome were identical to those of typical vertebrates. The phylogenetic trees were reconstructed based on the concatenated nucleotide sequence matrix of 13 PCGs and the partial sequence of a DNA barcoding marker, cox1 in order to determine its molecular phylogenetic position among the order Scorpaeniformes. The phylogenetic result revealed that P. cultellatus formed a monophyletic group with species belonging to the same family and consistently clustered with one nominal species, P. indicus, and two Platycephalus sp. specimens. Besides, the cox1 tree confirmed the taxonomic validity of our specimen by forming a monophyletic clade with its conspecific specimens. The mitogenome of P. cultellatus analyzed in this study will contribute valuable information for further study on taxonomy and phylogeny of flatheads.

Evolution of sea Urchin Strongylocentrotus intermedius Based on DNA Sequences of a Mitochondrial Gene, Cytochrome c Oxidase Subunit I (미토콘드리아 유전자, 치토그롬 옥시다제(subunit I)의 염기서열을 이용한 새치성게(Strongylocentrotus intermedius)의 진화과정 분석)

  • Lee, Youn-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.157-168
    • /
    • 2000
  • Sea urchin S. intermedius occurring in the Korean east coast is a cold water species that belongs to the family Strongylocentrotidae of Echinoidea. Although it is known that there are nine species in the family, species identification criteria, phylogenetic relationships, time and process of evolution of the family members have not been uncovered clearly. In the present study, I tried to find some clues to such problems for S. intermedius by means of DNA sequences. For this, cytochrome c oxidase subunit I (COI), one of the mitochondrial genes that evolve fast and follow maternal inheritance was analyzed. DNA was extracted from the female gonad of S. intermedius, a segment of COI gene amplified by polymerase chain reaction (PCR), and finally a total of 1077 base pair sequence of COI obtained by cloning and sequencing the PCR product. The sequence was compared with homologous genes of other sea urchins and echinoderm species. Phylogenetic trees of the COI gene segment revealed that S. intenedius is a sister species of S. purpuratus which lives along the east coast of the Paciflc. With reference to the fossil records of sea urchins and genetic distances in the molecular phylogenies, it is estimated that the two species were separated about 0.89 million years ago when the earth temperature fluctuated significantly. The current disjunct distribution patterns of the two species and the climate change of the earth at the time of separation suggest that speciation might have occurred by vicariance. The COI gene sequence obtained here now can be used as a molecular character which discerns S. intermedius from the other sea urchin species of Strongylocentrotidae.

  • PDF

Exon Capture - Principle and Applications to Phylogenomics and Population Genomics of Fishes (엑손 포획 - 원리와 어류의 계통유전체학 및 집단유전체학으로의 응용)

  • Li, Chenhong
    • Korean Journal of Ichthyology
    • /
    • v.33 no.4
    • /
    • pp.205-216
    • /
    • 2021
  • Phylogenetic reconstruction based on one locus or a few loci can be misleading due to gene-tree/species-tree discordance. Species delimitation and intraspecific studies also often suffered from low resolution because of insufficient statistic power when few loci were used. Exon capture method is one of the most efficient way to collect genome-scale data, which can significantly augment studies that aimed to investigate patterns and histories of organisms at both intraspecific and high level. Here, I showed the advancement of shifting from single-gene method to genomic approach and the benefit of applying exon capture method comparing to alternative genomic techniques. Then, I explained the principle of exon capture method as well as providing detailed recommendations for applying this method. Finally, I demonstrated exon capture method using two applications and discussed future perspectives of this technology.

Taxonomic status of Goodyera rosulacea (Orchidaceae): molecular evidence based on ITS and trnL sequences (로젯사철란(Goodyera rosulacea: Orchidaceae)의 분류학적 위치: ITS와 trnL 염기서열에 의한 분자적 증거)

  • Lee, Chang Shook;Eom, Sang Mi;Lee, Nam Sook
    • Korean Journal of Plant Taxonomy
    • /
    • v.36 no.3
    • /
    • pp.189-207
    • /
    • 2006
  • Goodyera rosulacea, which is morphologically similar to G. repens, is described recently as a new species based on its distinct morphological characters such as rosette-formed leaves, short rhizome and habitat. To verify the taxonomic identity of G. rosulacea and its taxonomic relationship within Korean Goodyera taxa, sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA and the trnL region of cpDNA from 24 accessions including 1 outgroup accession were analyzed. Aligned sequences were analyzed using maximum parsimony and distance method, and the taxonomic identity and the taxonomic relationships among the related taxa were estimated by the existence of private marker gene and the phylogenetic tree of the aligned sequences. Molecular data indicate that G. rosulacea gas several private marker genes and shows monophyly in phylogenetic trees of both ITS and trnL sequences. the pairwise distance between G. rosulacea and the orher taxa of Korean Goodyera was 3.49-6.68% for ITS region and 5.05-9.53% for trnL region, indicating that G. rosulacea could be treated as an independent species. Therefore, our molecular data support the taxonomic of G. rosulacea as a distinct species of Korea. In phylogenetic trees, G. rosulacea formed same clade with G. repens, which has similar morphological characters with G. rosulacea, and showed the lowest pairwise distance with G. repens among Korean Goodyera taxa. These molecular data sugguested that G. rosulacea and G. repens are closely related taxa.

Molecular phylogeny of Astilbe: Implications for phylogeography and morphological evolution (노루오줌속(Astilbe)의 분자 계통: 계통지리 및 형질 진화에 대한 고찰)

  • Kim, Sang-Yong;Kim, Sung-Hee;Shin, Hyunchur;Kim, Young-Dong
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • Astilbe (Saxifragaceae) is a genus well known for its disjunctive distribution in Asia and eastern North America. In this study, we reconstructed a molecular phylogeny of the genus using the sequences of ITS regions of nuclear ribosomal DNA. A total of 17 species representing major lineage of Astilbe and closely related taxa were included in the phylogenetic analyses. We obtained a Bayesian phylogenetic tree in which Saxifragopsis was positioned as a sister group to Astilbe. The Japanese endemic species, A.platyphylla was the most basal lineage within the genus. This species is well known for its distinct morphological features such as unisexual flowers, apetaly, and calyx with 7-11 lobes. Two species, A. biternata, a New World representative of the genus, and A. rivularis widely distributed in S. Asia, branched off early in the evolution of Astilbe. The remaining species formed a strongly supported core clade, which diverged into two robust geographical lineages: the first ("Japonica" clade) of species distributed in Japan, Taiwan, and Philippines and the other ("Rubra" clade), of taxa in China and Korea. The ITS phylogeny indicates that the Bering land bridges were the major route for the origin and dispersal of A. biternata. The two Taiwanese taxa and A. philippinensis were found to derive from the Japanese member, as the genus advanced southwards. The ITS phylogeny suggests that apetaly originated independently at least two times within the genus. Our results do not support Engler's classification system of the genus based on the leaf type (simple vs. compound), but reaffirm Hara's taxonomic idea which primarily considered the features of calyx.