The purpose of this paper is to investigate the dispositions of university students' understanding and reasoning about rational number concept. For this, we surveyed for the subject groups of prospective math teachers(33), engineering major students(35), American engineering and science major students(28). The questionnaire consists of four problems related to understanding of rational number concept and three problems related to rational number operation reasoning. We asked multi-answers for the front four problem and the order of favorite algorithms for the back three problems. As a result, we found that university students don't understand exactly the facets of rational number and prefer the mechanic approaches rather than conceptual one. Furthermore, they reasoned illogically in many situations related to fraction, ratio, proportion, rational number and don't recognize exactly the connection between them, and confuse about rational number concept.
Journal of Elementary Mathematics Education in Korea
/
v.17
no.3
/
pp.457-481
/
2013
Since the importance of teacher knowledge in teaching mathematics has been emphasized, there have been many studies exploring the nature or characteristics of such knowledge. However, there has been lack of research on the tools of investigating teacher knowledge. Given this background, this study explored teachers' knowledge of fraction lessons using classroom video analysis. The analyses of this study showed that knowledge of teaching methods was activated better than that of student thinking or mathematical content. Knowledge of fraction operation was activated better than that of fraction concept. The degree by which teacher knowledge was activated depended on the characteristics of the video clips used in the study. This paper raised some issues about teachers' knowledge of fraction lessons and suggested classroom video analysis as an alternative tool to measure teacher knowledge in the Korean context.
With the importance for teachers of understanding students' strategies and providing appropriate feedback to their students, the purpose of this study is to analyze how prospective elementary teachers interpret and respond students' strategies for fraction tasks with number lines. The findings from analysis of 64 prospective teachers' responses were as follow. First, the prospective teachers in general could identify the students' understanding and errors based on their strategies, however, some prospective teachers overgeneralized students' mathematical thinking at a superficial level. Second, the prospective teachers could pose diverse tasks or activities for revising the students' errors, while some prospective teachers tried to correct students' errors by using only the area models. Based on these results, this study suggests for prospective teachers to have opportunities to understand elementary students' diverse problem strategies and to consider teaching methods with different fraction models.
Journal of Elementary Mathematics Education in Korea
/
v.18
no.1
/
pp.37-62
/
2014
In this thesis, we inquire into teaching method of decimal fraction concept in elementary mathematics education based on measurement activity. For this purpose, our research tasks are as follows: First, we design a experimental learning-teaching plan of 'decimal fraction' unit in 4th grade textbook and verify its effect. Second, after teaching experiment using experimental learning-teaching plan, we analyze the student's status of understanding about decimal fraction concept. As stated above, we have performed teaching experiment which is ruled by new lesson design and analysed the effects of teaching experiment. Through this study, we obtained the following results. First, introduction of decimal fraction based on measurement activity promotes student's understanding of measuring number and decimal notation. Second, operator concept of decimal fraction is widely used in daily life. Its usage is suitable for elementary mathematics education within the decimal notation system. Third, a teaching method of times concepts using place value expansion of decimal fraction is more meaningful and has less possibility of misunderstanding than mechanical shift of decimal point. Fourth, teaching decimal fraction through the decimal expansion helps students with understanding of digit 0 contained in decimal fraction, comparing of size and place value. Fifth, students have difficulties in understanding conversion process of decimal fraction into decimal notation system using measurement activity. It can be done easily when fraction is used. However, that is breach to curriculum. It is necessary to succeed research for this.
In this paper, we will prove that a free join algebra and a universal derivation module of its subalgebras have a universal derivation module induced by its subalgebras.
Proceedings of the Korea Contents Association Conference
/
2012.05a
/
pp.39-40
/
2012
G-러닝 게임은 게임의 집중력과 재미 요소를 기반으로 학습의 목적을 가진 콘텐츠로, 최근 아동 교육용 G-러닝 게임의 시장 규모가 증가하고 있다. 그러나 기존에 연구된 G-러닝 게임은 교육성과 게임성의 디자인 방향이 일치하지 않아 균형 있는 효과를 기대하기 어렵다. 본 논문에서는 초등학교 4학년을 대상의 분수 학습을 위한 G-러닝 게임의 게임디자인 방법을 논한다. 분수 개념은 4학년 교과 과정 중 학습 난이도가 높고 이해가 어려워 단순 교수법보다 구성주의 학습법이 적합하다. 게임과 교육의 융합을 위한 디자인의 일환으로 G-Math 게임을 개발하였다. G-Math 게임은 구성주의 학습방법을 기초하여 ETC(탐구, 협동, 대화, 이해)이론으로 디자인 하였다. 본 연구는 G러닝 게임의 교육성과 게임성을 융합함과 동시에 효과적인 학습 방법을 디자인함으로서 G-Math에 특화된 콘텐츠를 제공한다.
This study examined pre-service teachers' pedagogical content knowledge of fraction division in a context where they were asked to write a story problem for a symbolic expression illustrating a whole number divided by a proper fraction. Problem-posing is an important instructional strategy with the potential to create meaningful contexts for learning mathematical concepts, especially when real-world applications are intended. In this study, story problems written by 135 elementary pre-service teachers were analyzed with respect to mathematical correctness. error types, and division models. Patterns and tendencies in elementary pre-service teachers' knowledge of fraction division were identified. Implicaitons for teaching and teacher education are discussed.
This study examined the relationship between preservice teachers' mathematical understanding and problem posing in fractions multiplication and division. To this purpose, 41 preservice teachers performed visual representation and problem posing tasks for fraction multiplication and division, measured their mathematical understanding and problem posing ability, and examined the relationship between mathematical understanding and problem posing ability using cross-tabulation analysis. As a result, most of the preservice teachers showed conceptual understanding of fraction multiplication and division, and five types of difficulties appeared. In problem posing, most of the preservice teachers failed to pose a math problem that could be solved, and four types of difficulties appeared. As a result of cross-tabulation analysis, the degree of mathematical understanding was related to the ability to pose problems. Based on these results, implications for preservice teachers' mathematical understanding and problem posing were suggested.
The concepts of ratio and proportion do not develop in isolation. Rather, they are part of the individual's multiplicative conceptual field, which includes other concepts such as multiplication, division, and rational numbers. The current study attempted to clarify the beginning of this development process. One fourth student, Kyungsu, was encourage to schematize his trial-and-error-based method, which was effective in solving so-called missing-value tasks. This study describes several advancements Kyungsu made during the teaching experiment and analyzes the challenges Kyungsu faced in attempting to schematize his method. Finally, the mathematical knowledge Kyungsu needed to further develop his ratio and proportion concepts is identified. The findings provide additional support for the view that the development of ratio and proportion concepts is embedded within the development of the multiplicative conceptual field.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.2
/
pp.241-262
/
2010
This study was carried out to identify the cognitive obstacles while using addition and subtraction with fractions, and to analyze the sources of cognitive obstacles. For this purpose, the following research questions were established : 1. What errors do elementary students make while performing the operations with fractions, and what cognitive obstacles do they have? 2. What sources cause the cognitive obstacles to occur? The results obtained in this study were as follows : First, the student's cognitive obstacles were classified as those operating with same denominators, different denominators, and both. Some common cognitive obstacles that occurred when operating with same denominators and with different denominators were: the students would use division instead of addition and subtraction to solve their problems, when adding fractions, the students would make a natural number as their answer, the students incorporated different solving methods when working with improper fractions, as well as, making errors when reducing fractions. Cognitive obstacles in operating with same denominators were: adding the natural number to the numerator, subtracting the small number from the big number without carrying over, and making errors when doing so. Cognitive obstacles while operating with different denominators were their understanding of how to work with the denominators and numerators, and they made errors when reducing fractions to common denominators. Second, the factors that affected these cognitive obstacles were classified as epistemological factors, psychological factors, and didactical factors. The epistemological factors that affected the cognitive obstacles when using addition and subtraction with fractions were focused on hasty generalizations, intuition, linguistic representation, portions. The psychological factors that affected the cognitive obstacles were focused on instrumental understanding, notion image, obsession with operation of natural numbers, and constraint satisfaction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.