본 논문에서는 분산 컴퓨팅 환경에서 클러스터 노드 할당 시스템에 대한 최적화 모델을 제시한다. 분산 파일 시스템 구조를 지닌 제시 모델에서는 시간에 따른 시스템의 역동적인 움직임을 면밀하게 고려하여 클러스터 노드 할당 세트가 타당한지를 조사하는 클러스터 모니터 노드의 기능이 주어진다. 노드 할당 시스템의 클러스터 모니터 노드는 병렬 모듈들을 클러스터 노드들에 분산시키면서 유전 알고리즘을 이용하여 좋은 할당 솔루션을 제공한다. 실험적 연구의 일환으로 코딩 기법, 교배, 돌연변이, 개체집단 크기 같은 다양한 유전 인자 파라미터와 노드 모듈개수에 따른 솔루션 품질 및 계산 시간에 관한 비교 실험 결과를 발표한다.
신경망은 복잡하게 나타나는 비선형성을 가지는 실제의 다양한 문제들에 적용이 가능할 뿐만 아니라, 정보들이 가중치에 분산되어 저장됨으로서 강인성을 가지고 있다. 그러나 전방향 다층 신경망 구조를 학습할 수 있는 역전파 알고리즘은 초기 가중치의 영향에 의하여 학습된 결과가 지역 최소점에 빠지기 쉬운 경향이 있다. 본 논문에서는 이러한 문제점을 해결하기 위한 한가지 방법으로서 유전자 알고리즘을 이용하여 전방향 다층 신경망의 가중치를 학습하여, 지역 최소점에 빠지지 않고 학습이 이루어짐을 보인다.
분산 환경에서 데이터의 할당(allocation)는 중요한 설계 이슈이다. 데이터의 할당은 분산 데이터에 대한 비용(cost) 감소, 성능(performance) 및 가용성(availability) 향상 등의 이점을 극대화할 수 있도록 최적화되어야 한다. 기존 연구들의 대부분은 트랜잭션의 수행 비용을 최소화하는 방향으로만 최적화된 데이터 할당 결과를 제시하고 있다. 즉, 비용, 성능 및 가용성을 모두 함께 고려하는 연구는 아직까지 제시된 결과가 없으며 이는 복잡한 모델에 대한 적절한 최적화 기법이 없기 때문이다. 본 연구에서는 분산 데이터의 이점들인 비용, 성능 및 가용성 등의 다중측면을 동시에 고려함으로써 데이터 할당에 대한 파레토 최적해를 제공하는 DAMMA (Data Allocation Methodology considering Multiple Aspects) 방법론을 제안하였다. DAMMA 방법론은 데이터 분할 과정을 통하여 생성된 최적의 단편들을 분산 시스템의 운용 비용, 수행 성능, 가용성 등의 요소를 고려하여 각 물리적 사이트에 중복 할당하는 파레토 최적해들을 생성해낼 수 있는 설계 방법론이다.
병렬 컴퓨팅에 있어 NP-complete 문제인 태스크 할당문제에 대한 두 가지 휴리스틱 알고리즘을 제시한다. 할당문제는 분산 메모리 멀티컴퓨터의 멀티 프로세싱 노드에 다중통신 태스크들을 최적의 매핑을 찾는 것이다. 태스크들을 목표 시스템 구조의 노드들에 매핑시키는 목적은 해법 품질에 손상 없이 병렬 실행시간을 최소화하기 위함이다. 많은 휴리스틱 기법들이 만족한 매핑을 얻기 위해 채택되어 왔다. 본 논문에서 제시되는 휴리스틱 기법은 유전자 알고리즘(GA)과 시뮬레이티드 어닐링(SA) 기법에 기반을 둔다. 매핑 설정을 위한 총 계산 비용으로 목적함수를 수식화하고 휴리스틱 알고리즘들의 성능을 평가한다. 랜덤, 그리디, 유전자, 어닐링 알고리즘들을 사용하여 얻은 해법의 품질과 시간을 비교한다. 할당 알고리즘 시뮬레이션 연구를 통한 실험적 결과를 보여준다.
암반 불연속면의 조사 및 분석 과정에서 거쳐야할 필수적인 단계 중 하나는 방대한 불연속면 자료로부터 군을 판별하는 것이다. 불연속면 군 분류는 암반분류, 키블록 해석. 개별요소해석 및 불연속연결망 생성과 같은 암반공학적 업무에 있어서 필수적이다. 일반적으로 등고선도를 이용한 수작업 군 분류가 적용되었으나 이 방법은 수작업에 의존한 주관적인 결과를 제공한다는 단점이 있다. 본 연구에서는 유전자알고리즘을 이용한 불연속면 군 분석기법을 도입하였으며 방향성 자료에 적용하기 위해 기본적인 유전자알고리즘을 변경하였다. 최종적으로 이러한 이론을 적용한 FORTRAN 프로그램 GAC를 개발하였으며 두 가지 형태의 불연속면 자료의 군 분석에 적용하였다. 적용 결과 GAC를 적용한 군 분류는 빠르고 효율적인 군 분석방법임을 확인하였으며 최적의 불연속면 군 수를 결정하는 데 있어서 분산에 근거한 적합도 함수가 Davis-Bouldin 지수에 근거한 적합도 함수보다 효율적인 것으로 나타났다.
수치고도모형을 이용한 흐름분배 알고리즘들은 지형을 따른 흐름의 분산특성을 잘 기술해 주는 방향으로 발달되어 왔지만, 수로격자의 연결성, 지형기복을 따른 다양한 분산특성, 수로격자크기 등과 관련한 한계성을 가지고 있다. 기존 흐름 알고리즘들이 흐름분배 결정에 사용한 지형 데이터들은 수치고도모형에서 산출가능한 흐름누적면적과 경사도로서 유역내 지배적인 흐름경로인 수로격자의 위치와 크기에 대한 고려를 하지 않는다. 따라서 본 연구에서는 기존 알고리즘들의 단점인 수로의 연결성과 복잡한 지형을 따른 다양한 흐름분산 특성을 기술할 수 있는 흐름 분배 알고리즘을 제안하고, 유전자 알고리즘을 이용하여 수로격자의 위치와 크기를 가장 잘 표현할 수 있도록 최적화하였으며, 기존의 방법에 비해 개선된 결과를 얻을 수 있었다.
본 논문에서는 여러 개의 클래스가 존재할 때, 각 클래스 내에서 샘플들을 클러스터링하고 서로 다른 클래스들과 분산도를 비교하여 클러스터가 가장 겹치지 않는 유전자 쌍들을 찾는다. 각 유전자 쌍에서 테스트 샘플과 가장 가까운 클러스터를 찾음으로써 클래스를 분류하고, 최종적으로 과반수 의결(Majority vote)하여 가장 많이 분류된 클래스를 최종 클래스로 확정한다. 그 결과, 해당 모델이 여러 개의 클래스를 가진 데이터에서 다른 비교 알고리즘의 모델들보다 높은 정확도를 나타내었다.
구형펄스모형(Rectangular Pulse Model)에서 반영하지 못하는 강우의 군집특성을 잘 반영하는 NSRPM(Neyman-Scott Rectangular Pulse Model) 강우생성 모형은 수자원 분야에 널리 쓰이고 있다. 일반적으로 NSRPM의 5개의 매개변수를 추정하는 최적화기법으로 DFP(Davidon-Fletcher-Powell)과 유전자알고리즘(Genetic Algorithm)을 사용하고 있다. 그러나 DFP는 주어진 초기 값에 따라 민감하며 각 반복 단계마다 헤시안행렬(Hessian Matrix)을 계산하여야 하며 추정된 전체의 해가 국지해에 수렴 할 수 있는 단점이 있다. 유전자 알고리즘을 DFP와 다르게 헤시안 행렬을 사용하지 않고 최적화를 할 수 있다는 장점이 있으나 시간이 오래 걸리는 단점이 있다. 이에 본 연구에서는 이러한 단점을 보완, 강화 하기위해서 최적화 기법으로 반복 단계마다 미분계산이 필요하지 않고 빠른 속도로 계산이 가능한 Nelder-Mead 알고리즘 이용하여 NSRPM매개변수를 추정하고 정확도를 비교하였다. 표 1은 각 기법을 이용하여 추정된 매개변수를 이용하여 생성한 강우의 통계특성과 관측된 통계특성의 상대오차를 나타낸 것이다. 괄호 안 숫자는 중첩되지 않는 누적시간을 나타낸다. 상대오차는 다음과 같다(식 1). 분석결과 Nelder-Mead 기법이 1시간의 평균, 공분산과 6시간 분산 등 전체적으로 GA, DFP보다 높은 정확도를 보였다.
최근에 정보네트워크 사용자의 급증에 따라 DDS(Distributed Database System)는 VAN(Value Added Network)상에서 구현되었다. DDS는 지역적으로 분산된 작업환경에서 중앙집중식 데이터베이스 구축보다 여러 측면에서 장점이 있으나 불합리한 설계는 컴퓨터 및 네트워크 자원의 비효율적 사용에 의한 비용의 증가와 데이터 유지를 위한 복잡도의 증가를 야기한다. DDS 설계시 각 사이트에서 적절한 컴퓨터를 선택하는 문제와 단편화된 데이터를 적절한 사이트에 할당하는 문제가 중요하다. VAN 상에서 컴퓨터 선택과 데이터 파일의 할당은 응답대기시간(waited response time)과 투자비용(investment cost)의 상관관계를 반드시 고려하여 결정되어야 하므로, 본 논문에서는 각 컴퓨터와 파일의 할당의 영향에 따라 두 목적함수의 상관관계를 고려한다. 특히, 응답대기 시간에 대한 보다 실제적인 평가를 위해 M/M/1 큐잉 시스템을 기초로 하여 설계한다. 제안된 설계모델은 경험적 탐색법 중의 하나인 유전자 알고리즘(Genetic Algorithm)의 적용을 통해 효율적인 해의 탐색을 시도하고 제안된 수학적 모델과 알고리즘의 성능 검토를 위해 모의실험 및 결과분석을 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.