• 제목/요약/키워드: 분산 유전자 알고리즘

검색결과 64건 처리시간 0.028초

네트워크기반 병렬 유전자 알고리즘을 이용한 중앙집중형 동적부하균등기법의 성능향상 (Performance Improvement of Centralized Dynamic Load-Balancing Method by Using Network Based Parallel Genetic Algorithm)

  • 송봉기;성길영;우종호
    • 한국정보통신학회논문지
    • /
    • 제9권1호
    • /
    • pp.165-171
    • /
    • 2005
  • 본 논문에서는 중앙집중형 동적부하균등을 효율적으로 처리하기 위하여 네트워크기반 병렬 유전자 알고리즘을 이용하였다. 기존의 유전자 알고리즘을 적용한 경우와는 달리 클라이언트들에서 최적작업 할당의 탐색을 분산처리하여 중앙 스케줄러의 성능을 향상시킬 수 있었다. 최적해의 수렴속도를 향상시키기 위해 선택연산은 룰렛휠 선택과 엘리트 보존전략을 함께 사용하였고, 염색체 인코딩은 슬라이딩윈도우기법을 이용하였으며 교차연산은 주기교차방법을 이용하였다. 부하균등기법의 유연성 변화에 따른 중앙 스케줄러의 성능을 모의실험한 결과 기존의 방법보다 성능이 향상됨을 확인하였다.

유전자 알고리즘을 이용한 서울시 군집화 최적 변수 선정 (Selection of Optimal Variables for Clustering of Seoul using Genetic Algorithm)

  • 김형진;정재훈;이정빈;김상민;허준
    • 대한공간정보학회지
    • /
    • 제22권4호
    • /
    • pp.175-181
    • /
    • 2014
  • 정부 3.0이라는 새로운 정부운영 계획과 함께 다양한 공공정보를 민간이 활용할 수 있게 되었으며, 특히 서울은 이러한 행정정보 공개 및 활용을 선도하고 있다. 공개된 행정정보를 통해 각 지역을 특징짓는 행정요소를 발견할 경우, 각종 행정정책을 위한 의사결정 수단에 반영할 수 있을 뿐만 아니라 특정 지역의 고객 특성을 파악하여 특화된 서비스나 상품을 판매하는 마케팅 수단으로도 사용할 수 있을 것으로 사료된다. 하지만, 방대한 양의 행정자료로부터 각 군집의 특성을 명확히 구분할 수 있는 최적의 조합을 찾는 과정은 조합최적화 문제로서 상당한 연산량을 요구한다. 본 연구에서는 서울시에서 제공하는 다차원 행정자료로부터 서울시를 대표하는 문화 산업의 중심인 서초구, 강남구, 송파구 등의 강남 3구를 다른 지역과 효과적으로 구분하는 행정요인를 찾고자 하였다. 방대한 양의 행정정보로부터 두 군집간의 차이점을 극대화하는 요인을 선별하기 위한 최적화 방법으로 유전자 알고리즘을 이용하였으며, 군집간 차이를 계산하는 척도로는 Dunn 지수를 이용하였다. 또한 유전자 알고리즘의 연산속도의 향상을 위해 Microsoft Azure에서 제공하는 cloud computing을 이용한 분산처리를 수행하였다. 자료로는 통계청으로 부터 취득한 총 718개의 행정자료를 이용하였으며, 그 중 28개가 최적 변수로 선정되었다. 검증을 위해 선정된 28개의 변수를 입력값으로 Ward의 최소분산법 및 K-means 알고리즘을 통한 군집화를 수행한 결과 두 경우 모두 강남 3구가 다른 지역으로부터 효과적으로 분류됨을 확인하였다.

유전자 알고리즘에 기반한 수산업 전력 수요 예측에 관한 연구 (Forecasting of Electricity Demand for Fishing Industry Based on Genetic Algorithm approach)

  • 김형수;이성근
    • 한국융합학회논문지
    • /
    • 제8권1호
    • /
    • pp.19-23
    • /
    • 2017
  • 전력은 모든 나라에서 사회 발전과 경제 성장에 가장 기본적인 자원이다. 산업이 고도화 되고 경제의 규모가 발전하면서 전력의 소비량은 점점 증가하고 있다. 전력을 공급하는 쪽에서는 전력을 생산할 때 자원의 낭비를 줄이기 위해 전력 사용량을 예측하는 것은 중요한 일이다. 또한 전력 수요 예측을 통해 여름과 겨울의 피크 타임에서의 전력 수요를 분산하는 것이 가능하다. 그리고 소비 전력의 예측은 국내에서 수요자원 거래시장(Negawatt market)이 본격화되면서 더욱 중요하게 되었다. 더구나 전력 소비량 예측은 소비자가 전력 시장에 직간접적으로 참여하는 수요관리 방법을 제공해준다. 본 연구에서는 1999년부터 2011년까지의 국내총생산, 1인당 국민총소득, 부가세, 국내전력소비량을 이용하여 제주도의 어업 전력 사용량을 예측하는데 유전자 알고리즘을 사용하고 있다. 유전자 알고리즘은 다양한 조합 최적화 분야에서 최적해를 찾는데 유용하게 사용되는 알고리즘이다. 본 논문에서 유전자 알고리즘에서 최적의 동작을 위한 파라미터들을 찾는다. 그리고 실제 전력 소비량 예측을 위해 사용되는 계수(coefficient)들의 최적값을 찾아 예측값과 실제 전력 소비량의 오차를 최소화하는데 목적이 있다.

유전자 알고리즘 기반의 비지도 객체 분할 방법 (Unsupervised Segmentation of Objects using Genetic Algorithms)

  • 김은이;박세현
    • 전자공학회논문지CI
    • /
    • 제41권4호
    • /
    • pp.9-21
    • /
    • 2004
  • 본 논문은 동영상내의 객체를 자동으로 추출하고 추적할 수 있는 유전자 알고리즘 기반의 분할 방법을 제안한다. 제안된 방법은 시간 분할과 공간 분할로 이루어진다. 공간 분할은 각 프레임을 정확한 경계를 가진 영역으로 나누고 시간 분할은 각 프레임을 전경 영역과 배경 영역으로 나눈다. 공간 분할은 분산 유전자 알고리즘을 이용하여 수행된다. 그러나, 일반적인 유전자 알고리즘과는 달리, 염색체는 이전 프레임의 분할 결과로부터 초기화되고, 동적인 객체 부분에 대응하는 불안정 염색체만이 진화연산자에 의해 진화된다. 시간 분할은 두 개의 연속적인 프레임의 밝기 차이에 기반을 둔 적응적 임계치 방법에 의해 수행한다. 얻어진 공간과 시간 분할 결과의 결합을 통해서 객체를 추출하고, 이 객체들은 natural correspondence에 의해 전체 동영상을 통해 정확히 추적된다. 제안된 방법은 다음의 두 가지 장점을 가진다. 1) 제안된 비디오 분할 방법은 사전 정보를 필요로 하지 않는 자동 동영상 분할 방법이다. 2) 제안된 공간 분할방법은 기존의 유전자 알고리즘보다 해공간의 효율적인 탐색을 제공할 수 있을 뿐만 아니라, 정확한 객체 추적 메커니즘을 포함하고 있는 새로운 진화 알고리즘이다. 이러한 장점들은 제안된 방법이 잘 알려진 동영상과 실제 동영상에 성공적으로 적용됨을 통해 검증된다.

무선 센서 네트워크에서 유전자 알고리즘 기반의 혼잡 제어 (Congestion Control based on Genetic Algorithm in Wireless Sensor Network)

  • 박총명;이좌형;정인범
    • 한국정보과학회논문지:정보통신
    • /
    • 제36권5호
    • /
    • pp.413-424
    • /
    • 2009
  • 센서 네트워크는 많은 센서 노드들이 환경 정보를 수집하는 이벤트 기반의 네트워크 시스템이다. 에너지를 효율적으로 사용하기 위해, 센싱 주기를 길게 하며 특정한 이벤트가 발생한 경우에는 짧은 주기로 센싱하여 전송한다. 이러한 센서 네트워크 환경에서 지역적인 이벤트 발생은 네트워크의 혼잡을 야기하여 중요한 정보의 손실이 일어날 수 있으며, 과다한 전송 모듈의 사용으로 네트워크의 수명이 단축될 수 있다 본 논문에서는 지역적인 이벤트가 발생하여 네트워크 트래픽이 증가할 때, 트래픽이 집중된 노드의 트래픽을 분산하기 위한 유전자 알고리즘 기반의 흔잡 제어 기법(CCGA)을 제안한다. CCGA는 트래픽이 집중된 노드의 자식 노드들로부터 주변 노드들의 정보를 수집하고 유전자 알고리즘을 수행하여 포워딩노드를 선택하고 트래픽을 분산시킨다. CCGA의 유전자 알고리즘은 주변 노드들의 데이터 전송률을 염색체로 표현하였다. 이벤트 발생 지역 주변노드들의 데이터 전송률이 고르게 분포될 수 있도록 이벤트 발생지역 노드들의 전송률 평균과 표준편차를 이용한 적합도 함수를 설계하였다. 실험을 통하여 CCGA 알고리즘이 센서 노드들의 데이터 전송률을 균등하게 유지시키며 이러한 결과가 특정 노드의 전력 소모 집중을 방지함을 보인다. 이러한 결과는 센서 네트워크의 신뢰성 있는 데이터 전송을 보장하며 센서 네트워크의 수명 연장에 기여한다.

유전자 알고리즘을 활용한 P2P 기반 동적 작업할당 관리자 설계 (A Design of Dynamic Job Allocation Manager based on P2P using Genetic Algorithms)

  • 이승하;방세중;김양우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.776-779
    • /
    • 2009
  • P2P(Peer-to-Peer) 기반에 분산 작업 할당의 경우 정해진 수의 모든 피어에 작업을 분배하는 방식으로 처리하기 때문에 한 피어에 작업량이 증가하는 경우나 피어에 문제가 발생하는 경우 이를 사전에 예측하지 못해 시스템에 문제가 발생하게 된다. 또한 P2P 형태의 특성 상 피어의 그룹 참여는 유동적이며 그룹에 참여하는 피어의 사양도 다양하게 존재하게 된다. 이와 같은 상황에서는 작업을 할당하더라도 작업 진행이 이루어지지 않을 확률이 높아지고 전반적으로 시스템의 성능을 저하시키는 문제점을 가지게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해서 인공지능 알고리즘의 하나인 유전자 알고리즘(Genetic Algorithms: GA)를 활용하여 피어의 상태를 사전에 예측하여 작업 분배 시 동적으로 작업할 피어를 선택하여 처리하는 P2P기반 동적 작업할당 관리자를 설계하였다.

2차원 토러스 기반 다중 디스크 데이터 배치 병렬 유전자 알고리즘 (A 2-Dimension Torus-based Genetic Algorithm for Multi-disk Data Allocation)

  • 안대영;이상화;송해상
    • 전자공학회논문지CI
    • /
    • 제41권2호
    • /
    • pp.9-22
    • /
    • 2004
  • 본 논문에서는 NP-Complete 부류에 속하는 다중 디스크 데이터 배치 문제를 해결하기 위한 병렬 유전자 알고리즘을 제안한다. 이 문제는 디스크 입출력 처리의 병렬성이 극대화되도록 Binary Cartesian Product File의 데이터 블록들을 디스크어레이에 배치하는 방식을 찾는 것이다. 이 문제를 해결하기 위하여 제안되었던 DAGA 방식은 순차 유전자 알고리즘(Genetic Algorithm)으로서, 이전에 제안되었던 다른 방식에 비해 디스크 수에 대한 제약을 없애면서도 우수한 결과를 제공함을 보여 주었으나 시뮬레이션 시간이 너무 커서 큰 용량의 데이터 구성에 대한 시뮬레이션을 어렵게 하는 문제점이 있었다. 본 논문에서는 DAGA의 시뮬레이션 시간 단축을 위한 방식으로서, 2차원 토러스(2-Dimension Torus) 기반 병렬 유전자 알고리즘(ParaDAGA)을 제안한다. ParaDAGA는 분산 객체 모형을 기반으로 설계되었으며, 단일 프로세서 시스템에서 구현된 병렬처리 컴퓨터 시뮬레이터에서 수행되도록 구현하였다. 시뮬레이션 연구를 통하여, ParaDAGA의 시뮬레이션 변수 값이 결과에 주는 영향을 분석하였고, ParaDAGA 방식이 DAGA 방식에 비해 우수한 결과를 제공할 수 있는지를 실험하였다. 실험 결과는 ParaDAGA 방식이 순차 알고리즘인 DAGA보다 알고리즘 수행 시간 뿐 아니라, 찾아낸 결과도 우수함을 보여준다.

C++ 객체의 CORBA 기반 분산 시스템으로의 정적 할당 (Static Allocation of C++ Objects to CORBA-based Distributed Systems)

  • 최승훈
    • 인터넷정보학회논문지
    • /
    • 제1권2호
    • /
    • pp.69-88
    • /
    • 2000
  • 요약 분산 시스템의 전체적인 성능에 가장 큰 영향을 미치는 요인 중의 하나는, 소프트웨어 컴포넌트를 어떻게 효율적으로 분산시키는가 하는 것이다. 현재 태스크 기반의 시스템을 분할하여 분산 환경에 할당하는 문제는 연구가 많이 진행되었으나, 객체 지향 프로그램을 구성하는 각 객체들을 분산 객체 환경에 할당하는 기법에 대한 연구는 상대적으로 미약하다. 본 논문에서는 이미 개발되어 있는 C++ 응용 프로그램을 분할하여 C++ 객체들을 CORBA 기반의 분산 객체 환경에 할당하기 위한 그래프 모델을 정의하고, 이를 바탕으로 한 분산 객체 할당 알고리즘을 제안한다. 분산 시스템의 성능은, 주로 객체간의 병렬성, 각 프로세서에 드는 부하의 균등성, 네트워크 상의 통신 량에 의해 결정된다. 이 세 가지 요인을 동시에 최적화하는 해를 찾기 위하여. 본 논문의 분산 객체 할당 기법은 Niched Pareto 유전자 알고리즘(NPGA)에 바탕을 두고 있다. 전형적인 C++ 응용 프로그램에 대한 CORBA 시스템에서의 실험을 통하여 본 논문의 그래프 모델과 객체 할당 알고리즘의 유효성을 검증한다.

  • PDF

GPD 기반의 유전자 알고리즘을 이용한 포트폴리오 최적화 (Finding optimal portfolio based on genetic algorithm with generalized Pareto distribution)

  • 김현돈;김현태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1479-1494
    • /
    • 2015
  • 최적의 포트폴리오를 선택하기 위한 연구는 평균-분산모형을 시작으로 다양하게 진행되어 왔다. 과거에는 위험자산의 확률분포가 정규분포를 따른다고 가정하여, 투자자가 보유한 위험자산의 분산이 최소화되고 기대수익률이 최대가 되도록 포트폴리오를 구성하도록 하였다. 그러나 실제 위험자산의 분포에는 극단적인 사건들이 많이 발생하기 때문에 정규분포보다 훨씬 꼬리부분이 두꺼우며, 또한 왼쪽꼬리와 오른쪽꼬리가 대칭적이지도 않은 것으로 밝혀졌다. 이에 본 논문에서는 위험자산의 확률분포를 극단치 이론에서 널리 사용되는 일반화 파레토분포 (GPD)로 모형화하였고 체계적인 위험의 추정을 위하여 VaR를 이용하는 한편, 최적의 포트폴리오의 탐색을 위해서는 유전자 알고리즘을 사용하였다. 제안 방법의 적정성을 확인하기 위해 국내 증시에서 최적 포트폴리오를 탐색해 보았으며, 그 결과 GPD로 투자자산의 위험을 추정하였을 때 가장 좋은 결과를 얻을 수 있었다.

유전자 알고리즘을 이용한 트레이닝 최적화 기법 연구 - 정규분포를 고려한 통계적 영상분류의 경우 - (A Study on the Training Optimization Using Genetic Algorithm -In case of Statistical Classification considering Normal Distribution-)

  • 어양담;조봉환;이용웅;김용일
    • 대한원격탐사학회지
    • /
    • 제15권3호
    • /
    • pp.195-208
    • /
    • 1999
  • 위성영상 분류작업에서 분류클래스에 대한 샘플화소의 대표성은 분류 정확도에 많은 영향을 미친다. 따라서, 통계적 영상분류방법에서는 분류 기법 자체보다 분류 확률을 결정하는 트레이닝 단계, 즉 샘플화소의 최적화가 필요하다. 본 연구에서는 SPOT XS, LANDSAT TM을 이용한 위성영상 화소분류작업에서 분류 이전단계, 즉 샘플화소의 정규성을 계산하여, 정규성에 악영향을 미치는 화소를 객관적 기준으로 조정하였다. 정규화과정을 위한 유전자 알고리즘 적용의 생존확률 평가함수로 다변량 Q-Q plot의 상관계수와 트레이닝의 분산값을 고려하였으며, 5% 유의수준을 적용하였다. 연구결과, 실험대상지역의 경우, 유전자 알고리즘을 이용한 트레이닝 정규화 결과가 대부분의 클래스에 대하여 그 평균과 분산을 모집단에 근사시키고 있다는 것을 입증하였고, 해당 클래스의 모집단 분포를 예측할 수 있는 가능성을 제시하였다.