Journal of the Korea Society of Computer and Information
/
v.11
no.4
s.42
/
pp.119-125
/
2006
Distributed Systems can be defined as set of computing resources connected by computer network. One of the most significant techniques in optimization problem domains is parallel genetic algorithms, which are based on distributed systems. Since the status of dynamic network environments such as Internet and mobile computing. can be changed continually, it must not be efficient on the dynamic environments to solve an optimization problem using previous parallel genetic algorithms themselves. In this paper, we propose the effective technique, in which the parallel genetic algorithm can be used efficiently on the dynamic network environments.
Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
/
2003.10a
/
pp.47-52
/
2003
지금까지의 선형 최적화에 대한 연구는 고전적인 최적화 기법인 비선형계획법과 유동해석법을 중심으로 생물의 진화 알고리즘을 바탕으로 한 유전자 알고리즘과 인공지능에 기초를 둔 신경망이론 등이 이용되어 왔다. 또한 최근 컴퓨터의 성능이 급속도로 향상됨에 따라 전산유체역학에 기초한 시뮬레이션 평가기법도 사용되고 있다. 본 논문에서는 유전자 알고리즘을 이용한 선형 최적화 방법을 제시하였다. 그리고 광역 최적해의 효과적인 검색과 빠른 접근을 위한 방법으로 네트워크 시스템을 기반으로 한 병렬분산 유전자 알고리즘 시스템(PDGAS)을 개발하였으며 그 성능을 기존의 진화 알고리즘과 비교${\cdot}$분석함으로써 선형 최적화의 가능성을 확인하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.2
/
pp.164-170
/
2004
This paper proposes a Distributed Autonomous Robotic System(AIS) based on Artificial Immune System(AIS) and Distributed Genetic Algorithm(DGA). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: dispersion and aggregation. AIS decides one among above two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the DGA in the local. The proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.
The proposed hybrid algorithm combines the benefits of rapid convergence property of mean filed annealing(MFA) and the effective genetic operations of simulated annealing-like genetic algorithm(SGA). This algorithm is applied to the isotropic material stock cutting problem, especially to glass cutting in distributed computing environments base on MPI called message passing interface. The glass cutting is to place the required rectangular patterns to the given large glass sheets resulting in reducing the wasted scrap area. Our experimental results show that the heuristic method improves the performance over the conventional ones by decreasing the scrap area and maximum execution time. It is also proved that the proposed distributed algorithm maintains the convergence properties of sequential one while it achieves almost linear speedup as the problem size increases.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.2
/
pp.287-295
/
2010
In this paper, we introduce a novel approach to optimization algorithm which is a distributed Mean field Genetic algorithm (MGA) implemented in MPI(Message Passing Interface) environments. Distributed MGA is a hybrid algorithm of Mean Field Annealing(MFA) and Simulated annealing-like Genetic Algorithm(SGA). The proposed distributed MGA combines the benefit of rapid convergence property of MFA and the effective genetic operations of SGA. The proposed distributed MGA is applied to the channel routing problem, which is an important issue in the automatic layout design of VLSI circuits. Our experimental results show that the composition of heuristic methods improves the performance over GA alone in terms of mean execution time. It is also proved that the proposed distributed algorithm maintains the convergence properties of sequential algorithm while it achieves almost linear speedup as the problem size increases.
Kim, MiKyoung;Park, JunHo;Seong, DongOok;Yoo, JaeSoo
Annual Conference of KIPS
/
2010.11a
/
pp.979-982
/
2010
최근 한정된 에너지를 기반으로 동작하는 센서 네트워크 환경에서 에너지를 효율적으로 사용하기 위한 많은 연구가 이루어지고 있다. 대표적인 연구로써 이벤트 발생 여부에 따른 노드의 가변 센싱 및 전송 기법의 경우, 특정 노드에서 네트워크 혼잡을 야기하여 전송 패킷의 손실 및 전송 모듈의 과다 사용으로 인한 네트워크의 수명이 감소하게 된다. 이를 해결하기 위해, 유전자 알고리즘을 기반으로 네트워크 패킷을 주변 노드로 분산시키는 TARP 가 제안되었다. 하지만 TARP 의 경우, 유전자 알고리즘의 핵심 단계인 적합도 평가에서 사용되는 적합도 함수에 인접 노드의 평균 데이터 전송량 및 데이터 분산만을 고려하여 트래픽을 분산하기 때문에, 전체 네트워크 수명에 대한 추가적인 고려가 필요하다. 이를 해결하기 위해 본 논문에서는 유전자 알고리즘 기반의 에너지 인식 트래픽 분산 기법을 제안한다. 제안하는 기법은 적합도 평가에서 잔여 에너지량 및 단일 노드의 데이터 전송량을 추가적으로 고려함으로써, 보다 효율적인 트래픽 분산을 수행하여 네트워크 수명을 증가시킨다. 제안하는 기법의 우수성을 보이기 위해 시뮬레이션을 통해 기존의 트래픽 분산 기법(TARP)과 제안하는 기법과의 성능을 비교하였다. 그 결과 기존 기법에 비해 평균 27% 이상의 네트워크 수명의 향상을 보였다.
Proceedings of the Korea Society for Simulation Conference
/
2002.11a
/
pp.3-7
/
2002
컴퓨터 네트워킹 기술의 발달에 힘입어 분산처리를 이용한 기법이 복잡한 구조물의 최적설계에 널리 사용되고 있다. 최적설계시 구조물이 복잡하고 설계 변수가 많아질수록 설계 변수간의 교호작용이 복잡해지고 국부최적해가 많아지는 특성이 있다. 최근의 최적 설계는 이러한 문제점을 해결하고자 다양한 전역 최적화 기법을 도입하여 적용하고 있다. 본 연구에서는 진화이론을 바탕으로 한 유전자 알고리즘과 실험계획법을 바탕으로 한 반응표면법에 분산처리 기법을 도입하여 인공위성 추진 모듈의 최적화에 적용시켰다. 그 결과 유전자 알고리즘이 조금 더 좋은 최적값을 보였으며 해석시간은 반응표면법을 적용 시켰을 경우가 훨씬 짧았다. 병렬처리 기법을 이용한 위성구조체의 최적설계에 있어 유전자 알고리즘은 해의 전역성에서 반응표면법은 시간의 효율성에서 각각 장점을 보였다.
Query execution time minimization is an important objective in distributed database design. While total time minimization is an objective for On Line Transaction Processing (OLTP), response time minimization is for Decision Support queries. We formulate the sub-query allocation problem using analytical models and solve with genetic algorithm (GA). We show that query execution plans with total time minimization objective are inefficient from response time perspective and vice versa. The procedure is tested with simulation experiments for queries of up to 20 joins. Comparison with exhaustive enumeration indicates that GA produced optimal solutions in all cases in much less time.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.187-189
/
2003
분산 데이타베이스 시스템은 통신망으로 연결되어 있는 컴퓨터 노드들의 집합으로 구성되어 있으며 각 노드들은 데이타, 프로그램, 처리능력 등의 자원을 공유한다. 데이타의 분산은 접근 시간 단축, 가용성과 신뢰성, 동시성의 증가와 같은 장점이 있으나 통신 비용과 시스템 부하와 같은 성능저하 요인이 될 수도 있으므로 데이타를 최적의 노드에 분산시키는 할당 문제가 중요한 이슈이다. 본 논문에서는 시스템 운영 비용을 최소화 시키는 최적의 할당 노드를 찾기 위한 목적 함수를 기술하였으며 유전자 알고리즘을 사용하여 할당 목적 함수의 해를 구현하였다.
In a sender-initiated load balancing algorithm, a sender (overloaded processor) continues to send unnecessary request messages for load transfer until a receiver (underloaded processor) is found while the system load is heavy. Therefore, it yields many problems such as low cpu utilization and system throughput because of inefficient inter-processor communications until the sender receives an accept message from the receiver in this environment. This paper presents an approach based on genetic algorithm (GA) for dynamic load balancing in heterogeneous distributed systems. In this scheme the processors to which the requests are sent off are determined by the proposed GA to decrease unnecessary request messages.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.