
분산 데이타베이스에서의 질의실행시간 최소화를 위한 유전자알고리즘: 총 시간 대 반응시간 295

분산 데이타베이스에서의 질의실행시간 최소화를

위한 유전자알고리즘: 총 시간 대 반응시간

송 석 규
†

요 약

질의실행시간최소화는 분산 데이타베이스 설계에 있어 가장 중요한 목적중의 하나이다. 총시간최소화는 온라인거래처리시스템의 목적인 반

면, 반응시간최소화는 의사결정지원 질의시스템의 목적이다. 본 논문에서는 질의실행시간최소화를 달성하기 위해 질의를 세분화하여 최적의 데

이터베이스 사이트에 할당하는 분석모델을 개발하였으며, 문제해결방법으로 유전자알고리즘을 채택하였다. 총시간최소화 관점에서의 질의실행

계획은 반응시간최소화 관점의 질의실행계획에는 적합하지 않다는 것을 증명하였으며, 그 반대의 경우도 증명하였다. 최대 20개의 조인이 포함

되는 질의를 설계하여 시뮬레이션 실험을 통해 테스트를 수행하였고, 유전자알고리즘과 완전한 전수조사와의 결과를 비교함으로써 모든 경우에

유전자알고리즘을 채택한 해결책이 최적의 결과를 도출하였음을 증명하였다.

키워드 : 분산 데이타베이스, 질의최적화, 하부질의 할당, 질의실행계획, 유전자알고리즘

A Genetic Algorithm for Minimizing Query Processing Time in

Distributed Database Design: Total Time Versus Response Time

Song, Sukkyu
†

ABSTRACT

Query execution time minimization is an important objective in distributed database design. While total time minimization is an

objective for On Line Transaction Processing (OLTP), response time minimization is for Decision Support queries. We formulate the

sub-query allocation problem using analytical models and solve with genetic algorithm (GA). We show that query execution plans with

total time minimization objective are inefficient from response time perspective and vice versa. The procedure is tested with simulation

experiments for queries of up to 20 joins. Comparison with exhaustive enumeration indicates that GA produced optimal solutions in all

cases in much less time.

Keywords : Distributed Databases, Query Optimization, Sub-Query Allocation, Query Execution Plans, Genetic Algorithms

1. Introduction 1)

Distributed database systems have become very important

and common in today’s geographically distributed organi-

zations. Two important aspects of distributed database

design are data allocation and query optimization. It is

vital to the system performance that the query processing

be designed to produce the most efficient execution plans

of users’ queries. Distributed database design and query

optimization are still an active research area since several

†정 회 원 :영산대학교 호텔경영학과 교수
논문접수: 2008년 11월 19일
수 정 일 : 1차 2009년 3월 3일, 2차 2009년 4월 28일
심사완료: 2009년 5월 12일

researchers have been contributing to the area [Kossmann,

2000; Cheng et al, 2002; Johansson et al, 2003; Arcangeli

et al, 2004; Syam, 2005; Gu et al, 2006; Seshadri and

Cooper, 2007]. The design of distributed query processing

can be divided into two aspects: query execution order and

query execution plan or operation allocation [Kossmann,

2000]. Query execution order indicates the order in which

the subqueries should be executed. Operation allocation

indicates the site at which an operation (subquery) should

be executed.

Queries can be classified into OLTP (On-Line Transac-

tion Processing) and decision-support types of queries

[Bergsten et al., 1993; Ziane et al., 1993]. “To inquire

about air line seat availability” is an example of OLTP

DOI: 10.3745/KIPSTD.2009.16-D.3.295

296 정보처리학회논문지 D 제16-D권 제3호(2009.6)

type query in the travel industry, which is a highly repe-

titive transaction that requires high throughput. Typically,

the decision support queries are more complex, less frequent,

and access a large volume of data in an ad hoc manner.

An inquiry such as “to provide sales details of specific

routes by region and travel agent” in the travel industry

is an example of decision support, which requires low

response time.

Thus, OLTP and decision support have different goals and

thus query execution plans for them need to be designed

with total time minimization and response time minimization

objective functions, respectively. The distributed database

design with total time minimization that is optimal for OLTP

transactions is inefficient for decision support transactions

and vice versa. Total time minimization aims at minimizing

the total resource consumption (I/O, CPU, and Communi-

cation) and maximizing overall throughput of the system,

while the response time minimization aims at minimizing

the time between query origination and result receipt.

While OLTP and decision support queries are most common

in the business world, previous research paid little attention

to design distributed databases to optimize both these types

of queries together. The optimization of both these types

of transactions will make the database operations efficient,

thus making the working environment of business decision

makers more efficient. We are the first to undertake the

design optimization in distributed databases to minimize

the execution time of these two transaction types. The

objective of the paper is to present a methodology for

distributed database design in which queries are decomposed

into subqueries and these subqueries are allocated among

the nodes of the network so that the two objective functions

(minimization of total execution time and minimization of

response time) are optimized in order to meet the processing

requirements of OLTP and Decision Support transaction

types. The outcomes of our approach are selection of

execution sites for operations of a given distributed query

plan and comparison of allocations under the two objective

functions.

While most previous works focused on query execution

order, operation allocation has received little attention. In

today’s geographically distributed organizations, since more

sophisticated data access is needed by managers in areas

such as decision support and deductively augmented database

systems, answering OLTP and decision support type queries

often requires a large number of joins [Martin et al., 1990;

Caudrado, 1995; Florin and Alin, 2008]. If a query references

n relations, and each relation  has  copies, ≤ ≤ ,

then a straightforward enumeration algorithm for selecting

one copy of each relation takes time)(
1∏=

n

i
iXO [Martin et

al., 1990]. The problem of finding the allocation that yields

the minimum cost is NP-hard [Kossmann, 2000]. In order

to deal with this hard problem, we use Genetic Algorithms

[Goldberg, 1989] to arrive at near optimal solution. Genetic

algorithm is a heuristic solution that has been used to

solve intractable problems in database design [Song and

Gorla, 2000; Cheng et al, 2002; Du et al, 2006].

The organization of the paper is as follows. Next, we

present prior research in distributed database design and

query processing, highlighting the research gaps. Section

2 has discussion of cost models, including query processing

model and analytical cost models for total time and response

time. Section 3 has research methodology using genetic

algorithm; section 4 has illustration of our procedure for

both objective functions: total time and response time

minimizations along with time performance analysis. Section

5 has conclusions.

1.1 Previous Research

In order to improve distributed database performance,

previous researchers conducted studies in both data allocation

(how to allocate data fragments to sites) and operation

allocation (how to allocate subqueries to sites), though

operation allocation did not receive as much attention.

Apers [1988] developed a methodology for identification

and allocation of vertical and horizontal fragments based

on the user queries/updates in distributed databases, with

the objective of minimizing total transmission cost. They

compared both optimal and heuristic solutions using static

and dynamic processing schedules. The focus of their study

was fragment allocation, but not operation allocation.

Martin et.al. [1990] conducted simulation experiments to

compare four heuristic algorithms (branch-and-bound, greedy,

local search, and simulated annealing) for assignment of

sub-queries. The objective function is total query cost

comprising of local processing and communication costs.

They did not address subquery parallelism or response

time objective functions. Frieder and Baru [1994] propose

run-time operation allocation policies for hierarchically

structured, hypercube-based multicomputer system. The

site assignments are not determined a priori, instead, they

are assigned during the execution of a query. Tamhankar

and Ram [1998] proposed an integrated methodology to the

problems of data fragmentation, replication, and fragment

allocation in distributed databases. Cheng et al [2002] used

genetic algorithms to solve data partitioning problem after

modeling it as a traveling salesman problem. Baiao et al

[2004] propose a methodology for distribution design for

분산 데이타베이스에서의 질의실행시간 최소화를 위한 유전자알고리즘: 총 시간 대 반응시간 297

Object DBMS, using both vertical and horizontal parti-

tioning techniques.

Kossmann [2000] provides a survey of techniques useful

for query processing in distributed databases. Cornell and

Yu [1989] propose an integrated methodology to determine

the optimal allocation of relations and query operations to

sites to minimize the communication costs. They propose

two-step approach. First, they decompose queries into

individual relational algebra operations and use them to

determine the optimal allocation of relations and operations

to sites. It was formulated as a linear integer-programming

problem with the objective function of minimizing total

communication costs. They provide response time analysis

based on queuing network model. However, their objective

function includes communication costs only [March and

Rho 1995] and their response time calculation does not

consider the parallelism among the query executions of

different sites.

March and Rho [1995] extended the work of Cornell

and Yu [1989] and used the objective function of total

system cost comprising of storage, I/O, CPU, and com-

munication. After decomposing relations and transactions,

they apply iterative genetic algorithm to determine the

‘optimal’ allocation of fragments and operations. The authors

did not consider response time objective function in their

analysis and they suggest consideration of inter-operation

parallelism as a potential research direction. Kulkarni and

Jain [1993] study the interaction effect of concurrent

transactions in distributed databases using simulation.

Johnsson, March, and Naumann [2003] extend the previous

work of March and Rho [1995] by incorporating network

latency time and parallel processing among the nodes.

There have been fewer studies that contributed to the

design of query execution plans in distributed databases.

March and Rho [1995] state “It is extremely important to

recognize the ability of distributed systems to do parallel

processing, because it is a key component in achieving

fast processing” (p. 315). Furthermore, OLTP and decision

support type of transactions require different objective

functions. We extend previous research by considering

both the total time and response time minimizations in

the objective function, so that OLTP and decision support

queries can be optimized, respectively. Thus, our research

makes a contribution in the design of query execution

plans in the distributed databases.

We include the response time cost model to the operation

allocation problem by considering inter-operation parallelism

and recursive cost function. We consider explicitly query

tree and query execution order in the models. Our simulation

experiments using genetic algorithm are run in replicated

distributed database environment with complex queries.

Since any database environment consists of both OLTP and

Decision Support type of transactions, our contribution in

this research considering both types will be valuable to

the industry. We incorporate the allocation and parallel

processing of subqueries for handling OLTP and Decision

Support type transactions.

2. Development of cost models

2.1 Query Processing

The first step of query processing in a distributed

context is to transform a high-level global query into an

efficient execution strategy (the ordering of operations) on

local databases [Ozsu and Valduriez, 1991]. The set of

execution order of subqueries and their precedence relation-

ships can then be represented as a query tree. Each

operation in the query tree is viewed as a separate

subquery with one or two input relations and an output

relation. An input relation is either a relation maintained

by the system or the output relation of another query.

The output of a subquery is an intermediate relation, which

is stored at the site it is referenced and deleted after the

query is answered. We consider the relational algebra

operators: projection, selection and join. Other operations

can be included without altering the operation allocation

algorithm proposed in this research. Also note that we

assume that the structure of the query, i.e., the query

execution order, is fixed prior to operation allocation. Our

assumption is consistent with those of previous researches

in distributed databases as such some ad hoc execution

orders for designing optimization algorithms for distributed

query processing are assumed [Kossmann, 2000].

There is a site set associated with each node in the

query tree. The members of the site set for a leaf node

are those sites that hold a copy of that relation. The site

set for an operation node contains those sites that can

perform the operation. In general, selection and projection

operations requiring relations should be executed at only

those sites that hold a copy of relations referenced so

that there is no transmission of a relation required at the

site of the operations, but join operations can be executed

at any site. In the query tree, cost is associated with the

operation nodes representing local processing times, including

estimated CPU processing time and I/O time for its execu-

tion. The communication cost is associated with transmitting

the output relation from the site of source node to the

site of the receiving node.

298 정보처리학회논문지 D 제16-D권 제3호(2009.6)

2.2 Cost Models

As stated earlier, we investigate the subquery allocation

problem using two types of objective functions: (1) total

time minimization and (2) response time minimization.

The total time is the sum of all cost (time) components,

while the response time is the elapsed time from the

initiation to the completion of the query, including time to

transmit the results back to the site where the query has

originated. Furthermore, we assume pre-compiled queries

in our cost computations.

Let T, I, and K be the set of all sites, relations, and

queries, respectively. A query transaction k can be

decomposed into j subqueries (operations). Following is

the list of variables.

(1) jt
kY specifies the site at which each subquery is
executed. jt

kY is 1 if subquery j of query k is done
at site t, otherwise it is 0. We also introduce jp[m]t

kY

where p[m] represents two previous operations for

join operation j, and m is 1 for the left previous

operation and 2 for the right previous operation in

the query tree. So jp[m]t
kY is 1 if the left (m = 1) or

right (m = 2) previous operation for join operation

j of query k is done at site t, otherwise it is 0.

(2) Xit, representing the data allocation, is 1 if relation i

is stored at the site t. otherwise it is 0. ij
kZ is 1 if

input (or intermediate) relation(s) i is referenced by

subquery j of query k. We also introduce ijp[m]
kZ where

p[m] represents two previous operations for join

operation j; ijp[m]
kZ is 1 if input (or intermediate) relation

i is referenced by the left (m = 1) or right (m = 2)

previous operation for join operation j of query k,

otherwise it is 0.

The operation allocation problem can be expressed as

follows:

Given: itX (data allocation; relation i stored at site t) and
ij
kZ (relation (or intermediate result) i referenced
by subquery j of query k)

Find: jt
kY (operation allocation; site t for subquery j of
query k)

2.3 Total Time Model

The total time for each query is the sum of local pro-

cessing times and communication times for all subqueries.

Total Time = (LP + COM)j
k

 j
k

j∑ , where j
kLP represent the

local processing time of the subquery j (a node in the query

tree) of a query k. j
kCOM represents the communication

time of transmitting the input relation(s) to the site at

which the subquery j of a query k is being executed.

2.3.1 Local processing time (j
kLP)

The local processing time of a subquery depends on an

operation type, the size of the input relation(s), the CPU

speed and the I/O speed of the site selected. We assume

that CPU processing is proportional to the amount of data

accessed and that I/O time is proportional to the number

of blocks read or written.

(A) For a selection or projection on a relation, the local

processing time for the subquery j of the query k

is defined as:

j
kLP = Y (IO Z B CPU Z Bjt

k
t t ij

k
i ij

k
t ij

k
i ij

k∑ ∑ ∑+) (1)

where Bij
k
 is the number of blocks of relation i accessed

by subquery j of query k,

IOt is the I/O time of site t in msec for trans-

ferring 4k byte page into main memory,

CPUt is the CPU time of site t in msec per 4k byte

page for selection and/or projection.

(B) We also assume that the intermediate result of

each unary or join operation is transmitted directly

to the next join site and stored at the next join

site before the execution of the next join operation.

As such, the local processing time for the join j

of the query k is defined as:

j
kLP = Y IO Z Bjt

k
t mi ijp[m]

k
mt ijp[m]

kρ∑∑∑ + (2a)

Y (IO Z B CPU Z Bjt
k

t t ij
k

i ij
k

t ij
k

i ij
k∑ ∏ ∏+) (2b)

where ρm represents the selectivity of the two previous

operations (m = 1 or 2), where the

selectivity is the ratio of output relation size and

input relation size, and

Bijp[m]
k
 is the size of an input (intermediate) relation

where p[m] represents two previous

operations of the join operation j (m is 1 for the

left and 2 for the right operation).

Note that ρm can represent selection, projection or join

selectivity. (2a) represents the I/O time to store the inter-

mediate results of the previous operations to the site of

the current join operation. (2b) represents the I/O and CPU

processing times for the current join operation. Note that

we convert Bijp[m]
k
 (the size of intermediate results being stored

at the join site) to Bij
k
 (the size of same intermediate results

being retrieved for the current join operation) for notational

분산 데이타베이스에서의 질의실행시간 최소화를 위한 유전자알고리즘: 총 시간 대 반응시간 299

(Fig. 1) Four Joining Scenarios

convenience so that Bij
k
 will be used for the next join

operation with the join selectivity of the current join

operation.

2.3.2 Communication time (j
kCOM)

When either of the relation(s) to be joined is not produced

at the site at which the join operation is performed, commu-

nication for join operations is needed, and is expressed as

follows:

j
kCOM = Y Y C (Z Bjp[m]t

k
ptm jp

k
tp ijp[m]

k
i ijp[m]

k∑∑∑ ∑)

where Ctp is the communication cost between site p and

site t in msec per 4k byte page.

Note that if a previous operation and the join operation

are executed at the same site (t=p), then Ctp =0. Commu-

nication for sending the final result is also needed if the

final operation is not performed at the query originating

site. Since there is only one previous operation for the final

operation, we assume that Zijp[2]
k
 for all i is 0 (also Bijp[2]

k
 =

0). It should be noted that we consider communication

cost to include data transmission cost. However, in real

world, communication cost may also include time to synch-

ronize the two CPUs -- we ignore this synchronization

time, since this is usually a fixed overhead cost and it is

not variable like data transfer cost.

2.4 Response Time Model

In a distributed database system, it is possible to decom-

pose a query into subqueries that can be processed in

parallel and also their intermediate relations can be trans-

mitted in parallel to the required site. Two types of parallel

execution are possible: (1) intra-operation parallelism, and

(2) inter-operation parallelism [Srivastava and Elsesser,

1993]. A typical example of intra-operation parallelism is

pipelining of a single join operation, by which two sites

work in parallel; that is, the site that request remote data

will begin its join processing as soon as the first tuple or

packet of data has arrived, whereas in sequential processing,

the site receiving data will not begin its join processing

until all of the required data has arrived. With inter-

operation parallelism, several subqueries in a single query

can be executed in parallel. In calculating response time,

however, we limit the possible parallelism to the only

immediate child nodes of join operation and not among

the child nodes of different join operations.

Response time is calculated by taking into consideration

the possibility of performing local processing and data

transmission in parallel under the condition that the opera-

tions are performed at different sites as mentioned in the

previous section. The response time of query k is:

Response time RT
k
j = COM (p[1])j

k
 + LP k

j (p[1]) + RT k
j (p[1])

 where RT
k
j (p[1]) is the recursive function for the

response time.

The first term COM (p[1])j
k

 is to calculate the communi-

cation time sending the results to the query originating

site (ijp[2]
kZ for all i is 0 and Bijp[2]

k
 = 0) and the LP k

j (p[1])

refers to the local processing time of the final operation. For

the recursive function RT k
j (p[1]) (but we will use RT k

j for

convenience), we calculate the cost as follows. Four sce-

narios exist depending upon sites at which the join operation

j and the two preceding operations p[1] and p[2] are

executed. Figure 1 shows the four scenarios with three

sites for operation allocation; in each scenario, the bottom

two sites denote are used for preceding operations and

the top site is used for join operation.

2.4.1 Scenario - 1:

The join operation j and the sites two preceding

operators p[1] and p[2] are executed at the same site;

that is, 0 CYY tp
k
jp[2]t

k
jp[1]t = , 0 CYY tp

k
jt

k
jp[1]t = and 0 CYY tp

k
jp[2]t

k
jt = then

RT
k
j can be calculated by using the equation.

LP
k
j + ∑m

k
j (p[m]LP + (p[m])RTk

j)

300 정보처리학회논문지 D 제16-D권 제3호(2009.6)

Here, LP k
j is the local processing time for sub query j,

(p[m])LPk
j is the local processing time for the preceding left

(m=1) or right (m=2) operation (i.e. subsub query). These

local processing times are calculated using the equations

introduced in the previous section. (p[m])RTk
j is the (response)

time when a preceding operator is available for local

processing.

2.4.2 Scenario -2:

The join operation j and the two preceding operators

p[1] and p[2] are performed at three different sites. In

this case the three operators can be run in parallel. Then

the response time of the entire group is computed as the

maximum of resource consumption of individual operators

and the usage of all the shared resources (such as

communication times) [Kossman, 2000]. Then
k
jRT is given

by

Max { ,LPk
j (3a)

(p[1])LPk
j + (p[1])RTk

j , (3b)

(p[2])LPk
j + (p[2])RTk

j , (3c)

COM (p[1])j
k

 + COM (p[2])j
k

} (3d)

where COM (p[1])j
k

 =)BZ(CYY k
ijp[1]i

k
ijp[1]tp

k
jp

k
jp[1]t ∑

COM (p[2])j
k

 =)BZ(CYY k
ijp[2]i

k
ijp[2]tp

k
jp

k
jp[2]t ∑

In the above, (3d) represents shared resource consumption,

which is the communication time. (3a) is the local processing

time for subquery j and (3b) and (3c) are the processing

times for the two preceding operations of subquery j. The

communication costs will be additive, since those are the

overheads on the receiving node, as represented by (3d).

2.4.3 Scenario -3:

The sites at which two preceding operations of subquery

j are performed are different and the join subquery j uses

one of these sites. There is no communication cost between

one of the preceding operators, say p[1], and the operator

j. That is, 0 CYY tt
k
jt

k
jp[1]t = , 0 CYY tp

k
jt

k
jp[2]p ≠ and 0 CYY tp

k
jp[2]p

k
jp[1]t ≠ ,

then
k
jRT is given by:

Max {
k
jLP + (p[1])LPk

j + (p[1])RTk
j , (4a)

(p[2])LPk
j + (p[2])RTk

j , (4b)

COM (p[2])j
k } (4c)

where COM (p[2])j
k =)BZ(CYY k

ijp[2]i
k
ijp[2]tp

k
jt

k
jp[2]p ∑

In the above since sub query j and the left previous

operation p[1] are executed at the same site, the local

processing times of the two sites need to be added (4a).

Since right previous operation p[2] is executed at a

different site, its local processing time (included in (4b))

can be executed in parallel. In addition, the communication

time (4c) can be implemented in parallel as well.

2.4.4 Scenario - 4:

In secenario-4, the two preceding operations of subquery

j, p[1] and p[2], are executed at the same site, while the

subquery j is executed at a different site. There is

communication time involved in shipping data from both the

preceding operations p[1] and p[2] to the site of subquery

j. That is, 0 CYY tp
k
jt

k
jp[1]p ≠ , 0 CYY tp

k
jt

k
jp[2]p ≠ and 0 CYY pp

k
jp[2]p

k
jp[1]p = .

Also, there will be no parallelism between the operations

p[1] and p[2]. Then
k
jRT is given by

Max {
k
jLP , (5a)

(p[1])LPk
j + (p[2])LPk

j + (p[1])RTk
j + (p[2])RTk

j , (5b)

COM (p[2])j
k

+ COM (p[2])j
k

} (5c)

where (p[1])COMk
j =)BZ(CYY k

ijp[1]i
k
ijp[1]tp

k
jt

k
jp[1]p ∑

COM (p[2])j
k

 =)BZ(CYY k
ijp[2]i

k
ijp[2]tp

k
jt

k
jp[2]p ∑

In the above, since subquery j is executed at a different

site than the preceding operators, its local processing of

subquery j (5a) can be done in parallel to the communi-

cation time (5c) and the processing times of p[1] and p[2]

. Since the preceding operators are executed at the same

site, their local processing times are additive (4b). Also,

the communication costs will be additive, since those are

the overheads on the receiving node. Above equations

hold whether previous operations are joins, selections, or

projections, or other relational algebra operators.

The stopping condition of the recursive function RT is

as follows. We define: if p[m] in ijp[m]
kZ is equal to zero in

the response time recursive function, where zero for p[m]

means that the previous operation for this operation j

(subquery) is original relation. In scenarios 2 and 3,

parallelism between the preceding operations p[1] and p[2] is

implied. It is assumed there is no clash in data access bet-

ween the two preceding operations, i.e. i
k
ij

k
ij 0 (p[2]) Z* (p[1])Z ∀= ,

otherwise local processing times can be additive in the

worst case.

2.5 Cost Coefficients

We use the relative cost coefficients associated with

three cost components instead of using the actual measures

since the purpose of this research is to evaluate the

relative performance of operation allocation schemes in a

분산 데이타베이스에서의 질의실행시간 최소화를 위한 유전자알고리즘: 총 시간 대 반응시간 301

t is the iteration number

P(t) is the solution pool at the iteration t
p(t) is a candidate solution

t Å 0
Generate initial solution pool, P(t);

Calculate the fitness of each solution E(t) based on total time or response time;

While t<50 or there is improvement in consecutive generations do
Select p(t) from P(t) using ‘stochastic reminder without replacement’

Produce off springs by applying crossover and/or mutation with probability

Replace the worst fitness chromosomes by the best fitness chromosomes;
t Å t+1;

end;

(Fig. 2) General Sketch of the Genetic Algorithm

given distributed database environment. We assume that

the communication network is relatively high-speed wide

area networks whose data transmission speed is almost

equivalent to local area networks [Atkins and Norris,

1995]. A typical ratio of communication cost to local I/O

cost is 1:1.6 [Kossmann, 2000]. Furthermore, the typical

average I/O speed for processing one page block is 20

msec and the CPU speed 1-5 msec [Kossmann, 2000]. So

throughout this research we use: I/O cost coefficient (IOt)

is 20 per page, CPU cost coefficient (CPUt) 1 per page,

and communication cost coefficient (Ctp) 12 per page,

unless otherwise mentioned.

3. Methodology

As stated earlier, we will develop our solution procedure

using genetic algorithm due to intractability of the

distributed database design problems. Genetic algorithms

have been used by other researchers [Kumar and Pathak,

1995; Cheng et al, 2002; Gorla, 2001; Johansson et al, 2003;

Du et al, 2006] to solve difficult optimization problems in

database design. When compared to other heuristic algorithms

[Li and Jiang, 2000], Genetic Algorithm (GA) provides

global ‘optima’ with less time. Furthermore, the distributed

database design problems addressed in this research can be

classified into combinatorial optimization problems [Koss-

mann, 2000]. Most combinatorial optimization problems are

NP-hard, and so enumeration algorithms are inefficient to

solve large scale NP-hard problems. Thus heuristics such as

genetic algorithms, which can obtain nearly optimal solutions

within a reasonable time, are proposed as alternative

solution approaches [Goldberg, 1989; Michalewicz and Fogel,

2004].

Any genetic algorithm must have the following five

components [Goldberg, 1989]: (1) A genetic representation

of a solution to the problem, (2) A way to create an

initial population of solutions, (3) An evaluation function

that evaluates solutions, (4) Genetic operators that affect

the population of offspring, and (5) Values for the

parameters that the genetic algorithm uses (population

size, probabilities of applying genetic operators).

Each solution (chromosome) in the GA is a string of

integers, where the string length represents number of

operations and each integer at a particular position in the

string represents the site number selected for the

operation in that position. The fitness of each individual

member in the population is the query execution cost

calculated according to the equations presented in the

previous section. To select a member, we adopt a

technique termed “stochastic remainder without replacement”

[Goldberg, 1989]. Its basic idea is that chromosomes with

higher-than-average fitness generate more than one

offspring at the next generation, and it works as follows:

1) The fitness is normalized with the average value of

the fitness. The normalized fitness of a chromosome is

equal to the fitness of that chromosome divided by the

average value of the fitness of all chromosomes in the

population. 2) Chromosomes with higher-than-average

fitness will have more than one offspring, and those with

below-average fitness will have less than one offspring

on the average. 3) After the number of offspring has

been determined as above, the remainder of the new

population is then filled up by choosing another offspring

for each of the remaining chromosomes with probability

equal to the fractional part of the normalized fitness until

the total number of offspring equals the population size.

The parameters for crossover rate and mutation rate

were adapted primarily based on a large empirical study

by [Schaffer et al., 1989]. We also incorporate "elitism"

[Davis, 1991], in which the GA keeps track of the best

fitness chromosome in the population. More description

about GA can be found from [Goldberg, 1989]. A general

sketch of the Genetic Algorithm based on the procedures/

parameters outlined in (Fig. 2).

302 정보처리학회논문지 D 제16-D권 제3호(2009.6)

Relation Cardinality
Tuple

Size

Relation Size

(bytes)

Relation Size

(blocks)

Students (F3) 20 000 45 900 000 225

Enrolls (F1) 10 000 25 250 000 63

Courses (F2) 500 60 30 000 8

<Table 1A> Database Statistics

Site

1 2 3 4

Communication 1 0 13 12 11

Coefficients 2 13 0 11 12

3 12 11 0 13

4 11 12 13 0

I/O Coefficients 20 19 18 21

CPU Coefficients 1 1 1 1

<Table 1B> Communication, I/O, and CPU Cost Coefficients

(20)

f5

f6 f7

6

Students
1

3

Enrolls

2

5

F1 F2

F3
f4

4

(225)

(8)
(63)

Courses

(12)

(4)(51)

f8 (24)

(Fig. 3) Example Query Tree

4. Illustration

Consider a replicated distributed database with 4 sites

and 3 relations from a university database: Students (S#,

Sname, Major), Courses (C#, Cname, Dept, Credits), and

Enrolls (S#, C#, Grade), the database statistics of which

is provided in Table 1A. It is also assumed that the size

of page block is 4k bytes, and the length of attributes

measured in bytes are: S# (15), Sname (20), Major (10),

C# (8), Cname (20), Dept (30), Credits (2), Grade (2). The

allocation of the relations to sites is as follows: Relation

(F1) is stored in sites 1 and 2, relation (F2) at sites 2

and 3, relation F3 is stored at sites 3 and 4. As stated

earlier, the average cost coefficients are assumed to be in

the ratio of 20:1:12 for I/O, CPU, and Communication,

respectively and actual cost coefficients are shown in

Table 1B.

The following SQL statement will be used and the

corresponding query tree is shown in Figure 3. It is

assumed that the query-originating site is 4, and it is the

node 6 in (Fig. 3).

SELECT STUDENTS.S#, STUDENTS.Sname, COURSES.

Cname

FROM STUDENTS, COURSES, ENROLLS

WHERE STUDENTS.Major = ‘CIS’

AND ENROLLS.Grade > ‘C’

AND STUDENTS.S# = ENROLLS.S#

AND ENROLLS.C# = COURSES.C#

By using simple estimation techniques, the results of

each operation execution are as follows: (Note that ρs, ρp

and ρ j: the selectivity for selection, projection and join

respectively)

operation 1: σgrade > 'C' (Enrolls) f 4⇒

(63 x 0.8 (ρs) = 51 blocks)

operation 2: ΠC#, Cname Courses f5() ⇒

(8 x 0.47 (ρp) = 4 blocks)

operation 3: σmajor='CIS' (Students) f 7⇒

(225 x 0.05 (ρs) = 12 blocks)

operation 4: f 4 f5 f 6c#=c# ⇒

(f4 x f5 x ρ j = 51 x 4 x 0.1 = 20 blocks)

operation 5: f 6 f 7 fS# = S# ⇒

(f6 x f7 x ρ j = 20 x 12 x 0.1 = 24 blocks)

The results of the above size estimation are also shown

in (Fig. 3).

4.1 Total Time Minimization

The fitness function used in the GA is based on the

total time. The optimal solution was obtained in the third

generation. The final solution, based on the total time mini-

mization objective function, is 22323 (operations 1,2, and 4

are assigned to site 2, and operations 3 and 5 are assigned

to site 3). The cost calculations are shown in <Table 2>.

We can see that the total time to execute the query is

16488 time units, which comprises 15216 of I/O, 740 of

CPU, and 532 of communication time.

분산 데이타베이스에서의 질의실행시간 최소화를 위한 유전자알고리즘: 총 시간 대 반응시간 303

Subquery Assigned Site I/O Time CPU Time Local Total
Comm. Time

1 2

1 2 1197 63 1260 - -

2 3 152 8 160 - -

3 4 4050 225 4275 - -

4 2 4921 204 5125 0 44

5 3 4896 240 5136 220 156

* 6 4 0 0 0 312 -

* 6 is the query originating site

<Table 3> I/O, CPU, and Communication Times for Response Time Minimization Problem

Subquery Assigned Site I/O Time CPU Time
Local Processing

Time

Comm. Time

 1 2

1 2 1197 63 1260 - -

2 2 152 8 160 - -

3 3 4050 225 4275 - -

4 2 4921 204 5125 - -

5 3 4896 240 5136 220 -

* 6 4 0 0 0 312 -

Total 15 216 740 15956 532 -

* 6 is the query originating site

<Table 2> I/O, CPU and Communication Times for Total Time Minimization Problem

4.2 Response Time Minimization

The same example is used for the purpose of finding

optimal operation allocation with the objective function of

minimizing response time. The optimal solution from

running the genetic algorithm is 23423 (i.e. operation 1 is

assigned to site 2, operations 2, 4, and 5 are assigned to

site 3, and operation 3 is assigned to site 4). The I/O,

CPU, and Communication costs are given in <Table 3>.

For the given optimal operation allocation, the response

time is 7,708 units.

4.3 Analysis of Solutions

In the above example, as an illustration we used two

copies for each of the basic relations: Enrolls at sites 1

and 2, Courses at sites 2 and 3, and Students at 3 and 4.

In the total time minimization objective, both operation 1

((Enrolls)σ) and operation 2 ()Courses(Π) were assigned

to site 2. In the response time minimization, operations 1

and 2 are assigned to different sites, 2 and 3 respectively

- this resulted in communication time. Similarly the algorithm

assigned operation 3 ((Students)σ) to site 3, the same

site used for operation 5 (f7 f6 S# = S#) in total time

minimization case. On the other hand, in response time

minimization case, operation 3 and operation 5 were assigned

to different sites (sites 4 and 3 respectively) in order to

allow parallelism. In this analysis, the time unit is msec

based on processing one page block as stated in section 2.5.

With the total time minimization objective function, the

total resource consumption is 16,488 time units. On the

other hand, with response time minimization, the total

resource consumption is 17,355 units, which represents an

increase of more than 5% over the execution plan with

total time minimization. Furthermore, with total time mini-

mization, the total time that is needed to execute the

query is 16,488 units. With the same execution plan, the

response time is 11,143. With the response time objective

function, the given execution plan results in a response

time of 7,708 time units. This represents a reduction of

31% in response time compared to the solution with total

time minimization objective. This implies that using total

time minimization objective function will be very inefficient

with respect to response time. Thus, the query execution

plans should be designed with the appropriate objective

function into consideration.

In the example, we allowed two copies of each relation.

In effect, with total time minimization the five operations

were allocated to two sites (sites 2 and 3) whereas in

response time minimization case they were assigned to

three sites (sites 2,3, and 4). In a fully replicated database,

the “total time minimization allocation” will result in the

operations being allocated to only one site (the one with

least I/O and CPU cost coefficient); in this case total

time and response time will be the same, since there is

no parallelism possible. On the other hand, the “response

time minimization allocation” will result in many sites being

used for the operations; this will result in lot higher total

time compared to the total time in the case of “total time

minimization allocation”, because of increased communication

costs.

304 정보처리학회논문지 D 제16-D권 제3호(2009.6)

Number of Joins

R
un

 T
im

e

0

200

400

600

800

1000

1200

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

GA
Enum.

(Fig. 4) Execution Time (in seconds) of GA vs. Number of Joins

30
40 45 50 55

62
73

80
90

110

2.5 hrs

43 hrs

0

20

40

60

80

100

120

3 4 5 6 7 8 9 10 11 12
Number of Sites

R
un

 T
im

e

GA
Enum.

(Fig. 5) Execution Time (in seconds) of GA vs. Number of Sites

In summary, total time minimization is achieved when

queries use as few sites as possible, which will result in

minimum data communication costs. In the extreme case,

all subqueries can be executed at the same site. Response

time minimization can be achieved through a large number

of parallel executions and parallel transmissions when

subqueries are assigned to as many sites as possible.

Thus, there is performance difference with the execution

plans under these two conflicting objective functions.

4.4 Time Performance of Algorithm

In order to compare the results from GA with optimal

(through exhaustive enumeration), we ran two types of

experiments: one keeping the cost coefficients constant

and the other varying cost coefficients. In case 1, I/O,

CPU, and communication cost coefficients are fixed at 20,

1, and 12, respectively. We assumed network to consist

of 5 sites. Using a three-join query, we solved two

problems, one with objective function of total time and

the other with response time. We assume that each

relation is allocated two sites. The solution obtained by

GA matched the optimal solution obtained by exhaustive

enumeration. The exhaustive enumeration has a solution

space of about 2000 and it took about 2 minutes to

evaluate. The run time for GA is less than half of that

required for exhaustive enumeration. We solved two

additional problems, using the four-join query. The size

of solution space by exhaustive enumeration is about

5,000 and it took 20 minutes to solve, while GA took

about 1 minute. Furthermore, the GA found the optimal

solutions for both the problems. In case 2, we varied the

cost coefficients for I/O, CPU, and communication and

solved four more problems, with 3-join and 4-join queries

and with both the objective functions. The GA found the

optimal solutions for all the problems.

In order to investigate the run-time efficiency of the

operation allocation, we conducted two experiments, one

by varying the number of joins from 3 to 20 using 5

database sites and the other by varying the number of

sites from 3 to 12 using ten-join query. Figure 4 shows

run time performance of GA varying number of joins.

Exhaustive enumeration was performed for only two

cases (3-&4-joins) since cases for more than 4-join were

meaningless in terms of run-time comparison. For 3-join

case, exhaustive enumeration took 110 seconds, while GA

took 10 seconds. For 4-join case, they were 1200 and 19

seconds, for exhaustive enumeration and genetic algorithm,

respectively. Figure 5 shows the run time efficiency of

GA with a 10-join query, varying the number of sites.

With two copies each for a relation, exhaustive enume-

ration results in a large solution space, so we assumed

one copy per relation. This results in a solution space of

59,049 for 3-site problem and 1,048,576 for 4-site problem.

The run time of GA for 3-site case is 30 seconds and

for exhaustive enumeration it is 2.5 hours; for a 4-site

case, GA took 40 seconds and exhaustive enumeration

took 43 hours. The run time of GA varied linearly with

number of sites, while it was exponential for exhaustive

enumeration.

5. Conclusions

In this paper we have presented a solution technique

for designing query execution plans in distributed databases.

Our solution technique solves the problem of allocating

operations (subqueries) of a query to individual sites of a

network, with two objective functions: total time minimi-

zation and response time minimization. Comprehensive

cost models, including local processing and communication

costs, considering parallelism of subqueries were developed

for both objective functions based on the query trees that

represent a set of operations with their precedence rela-

tionship. The OLTP type transactions require high through-

put, hence total time minimization objective function is

appropriate. The Decision Support type transactions require

low response time, thus response time minimization objective

분산 데이타베이스에서의 질의실행시간 최소화를 위한 유전자알고리즘: 총 시간 대 반응시간 305

is appropriate. Our results show that the optimal alloca-

tions are quite different with the two objective functions:

total time and response time minimization. Response time

minimization could be achieved through a large variety of

parallel execution and parallel transmission. In order to

maximize these parallelisms, subqueries were allocated to

as many sites as possible. On the other hand, total time

minimization could be achieved when queries are executed

by using a minimum number of sites. In extreme case, all

subqueries could be executed at the same site if all

necessary fragments reside at one site. Minimization of

total system operating cost usually attempts to minimize

resource consumption (CPUs, I/Os, and communication

channels) -- more transactions can be processed for a

given time period i.e., the system throughput is increased.

On the other hand, a decrease in response time may be

obtained by having a large number of parallel executions

to different sites, requiring a higher resource consumption,

which means that the system throughput is reduced.

Furthermore, our results showed that the query execution

plans with total time minimization results in higher

response time compared to plans with response time

minimization. Our results have shown the GA produced

optimal solutions, as compared with the exhaustive enume-

ration for the problems that could be tested. We have

also shown the efficiency of the genetic algorithm in

solving complex queries, up to 20-join query tree. We

believe our research provides a better understanding of

the underlying query execution plans under the objectives

of total time minimization and response time minimization.

In our research, we assumed that query execution order

as given and determined the operation allocations. It

should be noted that the query execution order and the

operation allocation are two interdependent decisions. The

research can be extended by integrating both the sub-

problems and providing the optimal query execution plans.

The GA algorithm developed in this research can be

extended to include the additional sub-problem.

References

[1] P.M.G Apers, “Data Allocation in Distributed Database

Systems,” ACM Trans. on Database Systems, Vol.13, No.3,

pp.263-304, Sep., 1988.

[2] J. Arcangeli, A. Hameurlain, E. Migeon and F. Morvan,

“Mobile Agent Based Self-Adaptive Join for Wide-Area

Distributed Query Processing,” Journal of Database Mana-

gement, Vol.15, No.4, pp.25-44, 2004.

[3] J. Atkin and M. Norris, Total Area Networking: ATM, Frame

Relay and SMDS Explained, John Wiley & Son, New York,

N.Y., 1995

[4] F. Baiao, M. Mattoso and G. Zaverucha, “A Distribution

Design Methodology for Object DBMS,” Journal of Distri-

buted and Parallel Databases, Vol.16, No.1, pp.45-90, 2004.

[5] B. Bergsten, M. Couprie and P. Valduriez, “Overview of

Parallel Architectures for Database,” The Computer Journal,

Vol.36, pp.734-740, Aug., 1993.

[6] C-H Cheng, W-K Lee and K-F Wong, “A Genetic Algorithm-

Based Clustering Approach for Database Partitioning,” IEEE

Transactions on Systems, Man, and Cybernetics, Vol.32, No.3,

pp.215-230, 2002.

[7] D.W. Cornell and P.S. Yu, “On Optimal Site Assignment for

Relations in the Distributed Database Environment,” IEEE

Transactions on Software Engineering, Vol.15, No.8, pp.1004-

1009, Aug., 1989.

[8] J. Cuadrado, Optimize Database Queries, Byte, pp.57-63, July,

1995.

[9] L. Davis, Handbook of Genetic Algorithms, Van Nostrand

Reinhold, New York, N.Y., 1991.

[10] J. Du, R. Alhajj and K. Barker, “Genetic Algorithms Based

Approach to Database Vertical Partitioning,” Journal of

Intelligent Information Systems, Vol.26, No.2, pp.167-183,

2006.

[11] W. Du, M. Shan and U. Dayal, “Reducing Multidatabase

Query Response Time by Tree Balancing,” Proceedings of

the 1995 ACM SIGMOD International Conference on Mana-

gement of Data, San Jose, California, pp.293-303, May, 1995.

[12] R. Florin and D. Alin, “Sketches for Size of Join Estimation,”

ACM Transactions on Database Systems, Vol.33, No.3, pp.1-

46, 2008.

[13] O. Frieder and C. Baru, “Site and Query Scheduling Policies

in Multicomputer Database Systems,” IEEE Transactions on

Knowledge and Data Engineering, Vol.6, No.4, pp.609-619,

Aug., 1994.

[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization,

and Machine Learning, Addison-Wesley Publishing, 1989.

[15] N. Gorla, “An Object-Oriented Database Design for Improved

Performance,” Data and Knowledge Engineering, Vol.37, pp.

117-138, 2001.

[16] G. Graefe, “Query Evaluation Techniques for Large Databases,”

ACM Computing Surveys, Vol.25, pp.73-90, June, 1993.

[17] X. Gu, W. Lin and V. Bharadwaj, “Practically Realizable

Efficient Data Allocation and Replication Strategies for

Distributed Databases with Buffer Constraints,” IEEE

Transactions on Parallel & Distributed Systems, Vol.17, No.9,

pp.1001-1013, Sep., 2006.

[18] J. M. Johansson, S. T. March and J. D. Naumann, “Modeling

Network Latency and Parallel Processing in Distributed

Database Design,” Decision Sciences, Vol.34, No.4, pp.677-

706, 2003.

306 정보처리학회논문지 D 제16-D권 제3호(2009.6)

[19] D. Kossmann, “The State of the Art in Distributed Query

Processing,” ACM Computing Surveys, Vol.32, No.4, pp.422-

469, Dec., 2000.

[20] U R. Kulkarni and H. K. Jain, “Interaction Between Concur-

rent Transactions in the Design of Distributed Databases,”

Decision Sciences, Vol.24, No.2, pp.253-277, 1993.

[21] A. Kumar, and R. Pathak, “Genetic Algorithm Based Approach

for File Allocation on Distributed Systems,” Computers &

Operations Research, Vol.22, No.1, pp.41-55, 1995.

[22] B. Li and W. Jiang, “A novel stochastic optimization algori-

thm,” IEEE Trans. on Systems, Man, and Cybernetics, Part

B, Vol.30, No.1, 2000.

[23] S-J. Lim and Y-K Ng, “Vertical Fragmentation and Alloca-

tion in Distributed Deductive Database Systems,” Information

Systems, Vol.22, No.1, pp.1-24, 1997.

[24] S.T. March and S. Rho, “Allocating Data and Operations to

Nodes in Distributed Database Design,” IEEE Trans. on

Knowledge and Data Engineering, Vol.7, No.2, April, 1995.

[25] T. Martin, K. Lam and J. Russel, “An Evaluation of Site

Selection Algorithms for Distributed Query Processing,” The

Computer Journal, Vol.33, No.1, pp.61-70, 1990.

[26] Z. Michalewicz and D. Fogel, How to Solve It: Modern

Heuristics, 2
nd
 edition, Springer, Berlin, 2004.

[27] M. Ozsu and P. Valduriez, Principles of Distributed Database

Systems, Englewood Cliffs, Prentice-Hall Inc., 1991.

[28] S. Seshadri and B. Cooper, “Routing Queries through a

Peer-to-Peer InfoBeacons Network Using Information Retrieval

Techniques,” IEEE Transactions on Parallel & Distributed

Systems, Vol.18, No.12, pp.1754-1765, Dec., 2007.

[29] S.K. Song and N. Gorla, “A Genetic Algorithm for Vertical

Fragmentation and Access Path Selection,” The Computer

Journal, Vol.43, No.1, pp.81-93, 2000.

[30] J. D. Schaffer, R. A. Caruana, L. J. Eshlman and R. Das, “A

Study of Control Parameters Affecting Online Performance

of Genetic Algorithms for Function Optimization, In J. D.

Schaffer, (ed.), Proceedings of the Third International Confe-

rence on Genetic Algorithms, pp.51-60, 1989.

[31] J. Srivastava and G. Elsesser, “Optimizing Multi-Join Queries

in Parallel Relational Databases,” Proceedings of the 2
nd

International Conference on Parallel and Distributed Infor-

mation Systems, pp.84-92, 1993.

[32] M. Syam, “Allocating Fragments in Distributed Databases,”

IEEE Transactions on Parallel & Distributed Systems, Vol.

16, No.7, pp.577-585, Jul., 2005.

[33] A.M. Tamhankar and S. Ram, “Database Fragmentation and

Allocation: An Integrated Methodology and Case Study,”

IEEE Trans. on Systems, Man, and Cybernetics, Vol.28, No.3,

pp.288-305, May, 1998.

[34] L. The, “Distributing Data Without Choking the Net,” Data-

mation, Vol.40, pp.35-36, Jan. 7, 1994.

[35] C. T. Yu, C. Chang, M. Templeton, D. Brin and E. Lund,

“Query Processing in a Fragmented Relational Distributed

System: Mermaid,” IEEE Transactions on Software Engi-

neering, Vol.11, pp.795-809. Aug., 1985.

[36] M. Ziane, M. Zait and P. Borla-Salamet, “Parallel Query

Processing in DBS 3,” Proceedings of the 2
nd
 International

Conference on Parallel and Distributed Information Systems,

pp.93-102. 1993.

송 석 규

e-mail : sksong@ysu.ac.kr

1977년 성균관대학교 화학공학과(학사)

1990년 미국 Arizona State Univ. MIS

(석사)

1997년 미국 Cleveland State Univ. MIS

(박사)

1995년～1997년 ㈜포스데이타(POSDATA) 차장

1997년～현 재 영산대학교 호텔경영학과 교수

관심분야 :데이터베이스, 소프트웨어공학, 유전자알고리즘, IT경

영전략컨설팅, 호텔정보시스템

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /!BM-dolhdip1
 /!BM-gaulr
 /!BM-joyakr
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AharoniBold
 /ahn2006-B
 /ahn2006-L
 /ahn2006-M
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Algerian
 /AmericanGaramondBT-Roman
 /AmiR-HM
 /ArborisFolium
 /ArborWin
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Astro2KT
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /AvQest
 /BaskOldFace
 /Batang
 /BatangChe
 /BatangOldHangulJamo
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BlackChancery
 /BM-dolchulip1
 /BM-gaulr
 /BM-joyakr
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /Brush445BT-Regular
 /BrushScript
 /BrushScriptBT-Regular
 /BrushScriptMT
 /ByJOSSQ-DMFinBeiJing
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /CliperSKana
 /Cmsy10
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolekana
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /CordiaNew
 /CordiaNew-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Crayon
 /CurlzMT
 /DanzinRegular
 /DFKMincho-Bd-WIN-KSC-H
 /Dinbla
 /Dinbol
 /DinerRegular
 /DingDongBold
 /Dinlig
 /Dinmed
 /Dinreg
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /ExpoL-HM
 /ExpoM-HM
 /FelixTitlingMT
 /FencesPlain
 /Flora-Bold
 /Flora-BoldEx
 /Flora-BoldHo
 /Flora-BoldWd
 /Floralies
 /Flora-Normal
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZBSJW--GB1-0
 /FZCCHFW--GB1-0
 /FZCCHJW--GB1-0
 /FZCQFW--GB1-0
 /FZCQJW--GB1-0
 /FZCSFW--GB1-0
 /FZCSJW--GB1-0
 /FZCYFW--GB1-0
 /FZDBSFW--GB1-0
 /FZDBSJW--GB1-0
 /FZDHTJW--GB1-0
 /FZFSFW--GB1-0
 /FZFSJW--GB1-0
 /FZH4FW--GB1-0
 /FZHLFW--GB1-0
 /FZHLJW--GB1-0
 /FZHPFW--GB1-0
 /FZHPJW--GB1-0
 /FZHTFW--GB1-0
 /FZHTJW--GB1-0
 /FZKANGFW--GB1-0
 /FZKTFW--GB1-0
 /FZKTJW--GB1-0
 /FZL2FW--GB1-0
 /FZL2JW--GB1-0
 /FZLBFW--GB1-0
 /FZLBJW--GB1-0
 /FZLSJW--GB1-0
 /FZMHJW--GB1-0
 /FZNBSJW--GB1-0
 /FZNSTFW--GB1-0
 /FZPHFW--GB1-0
 /FZPHTFW--GB1-0
 /FZPHTJW--GB1-0
 /FZPWFW--GB1-0
 /FZPWJW--GB1-0
 /FZS3JW--GB1-0
 /FZSEFW--GB1-0
 /FZSEJW--GB1-0
 /FZSHJW--GB1-0
 /FZSJSFW--GB1-0
 /FZSJSJW--GB1-0
 /FZSSFW--GB1-0
 /FZSSJW--GB1-0
 /FZSTFW--GB1-0
 /FZSYFW--GB1-0
 /FZSYJW--GB1-0
 /FZSY--SURROGATE-0
 /FZSZFW--GB1-0
 /FZXBSFW--GB1-0
 /FZXBSJW--GB1-0
 /FZXDXJW--GB1-0
 /FZXH1FW--GB1-0
 /FZXH1JW--GB1-0
 /FZXKFW--GB1-0
 /FZXLFW--GB1-0
 /FZXQFW--GB1-0
 /FZXQJW--GB1-0
 /FZXSHFW--GB1-0
 /FZXSHJW--GB1-0
 /FZXSSFW--GB1-0
 /FZXXLFW--GB1-0
 /FZY1FW--GB1-0
 /FZY3FW--GB1-0
 /FZY3JW--GB1-0
 /FZY4FW--GB1-0
 /FZYTFW--GB1-0
 /FZYTJW--GB1-0
 /FZYXFW--GB1-0
 /FZZDXFW--GB1-0
 /FZZDXJW--GB1-0
 /FZZHYFW--GB1-0
 /FZZHYJW--GB1-0
 /FZZKFW--GB1-0
 /FZZQFW--GB1-0
 /FZZQJW--GB1-0
 /FZZYFW--GB1-0
 /FZZYJW--GB1-0
 /Gaeul
 /GaramB-HM
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /GaramondNo4CyrTCY-Medi
 /GauFontShirousagi
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GothicL-HM
 /GothicRoundB-HM
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /Goudy-Italic
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GraphicSansR-HM
 /GTB
 /GTM
 /Gulim
 /GulimChe
 /GulimOldHangulJamo
 /Gungsuh
 /GungsuhChe
 /H2bulL
 /H2gprM
 /H2gsrB
 /H2gtrB
 /H2gtrE
 /H2gtrM
 /H2hdrM
 /H2hsrM
 /H2mjmM
 /H2mjrB
 /H2mjrE
 /H2mjsM
 /H2mjuM
 /H2mkpB
 /H2mkrB
 /H2pirL
 /H2porL
 /H2porM
 /H2sa1B
 /H2sa1M
 /H2sa2L
 /H2snrB
 /H2ta1L
 /H2ta2M
 /H2wulE
 /H2wulL
 /H2yerM
 /H2ysrM
 /HaansoftBatang
 /HaansoftDotum
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HeadG
 /HeadlineR-HM
 /HeadlineSansR-HM
 /HeadR
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HGMinchoB
 /HGPMinchoB
 /HGSMinchoB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HMKBP
 /HMKBS
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /HYbdaL
 /HYbdaM
 /HYbsrB
 /HYBuDle-Medium
 /HYcysM
 /HYdnkB
 /HYdnkM
 /HYGoThic-Light
 /HYgprM
 /HYGraPhic-Bold
 /HYgsrB
 /HYgtrE
 /HYhaeseo
 /HYHeadLine-Bold
 /HyhwpEQ
 /HYkanB
 /HYkanM
 /HYKHeadLine-Bold
 /HYKHeadLine-Medium
 /HYLongSamul-Bold
 /HYLongSamul-Medium
 /HYmjrE
 /HYMokPan-Bold
 /HYmprL
 /HYMyeongJo-Light
 /HYMyeongJo-Medium
 /HYMyeongJo-Ultra
 /HYnamB
 /HYnamL
 /HYnamM
 /HYPMokPan-Bold
 /HYPMokPan-Light
 /HYPop-Medium
 /HYporM
 /HYPost-Bold
 /HYRGoThic-Bold
 /HYRGoThic-Medium
 /HYsanB
 /HYShortSamul-Light
 /HYSinGraPhic-Medium
 /HYSinMyeongJo-Bold
 /HYsnrL
 /HYsupB
 /HYsupM
 /HYSymbolD
 /HYSymbolE
 /HYSymbolF
 /HYSymbolG
 /HYSymbolH
 /HYTaJa-Bold
 /HYTaJaFull-Bold
 /HYTaJaFull-Light
 /HYTaJa-Medium
 /HYtbrB
 /HYwulB
 /HYwulM
 /HYYeasoL-Bold
 /HYYeatGul-Bold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /JasmineUPC
 /JasmineUPC-Bold
 /Jokerman-Regular
 /JuiceITC-Regular
 /KangSan
 /Kartika
 /Keroppi
 /KirillicaWincyr
 /KoreanGD-Bold-KSCpc-EUC-H
 /KoreanGD-Extra-KSCpc-EUC-H
 /KoreanGD-Medium-KSCpc-EUC-H
 /KoreanMJ-Bold-KSCpc-EUC-H
 /KoreanMJ-Medium-KSCpc-EUC-H
 /KristenITC-Regular
 /KunstlerScript
 /KyunKo
 /KyunMyung
 /Latha
 /LatinWide
 /LCDReg
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /Love
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /MagicR-HM
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal-Regular
 /Marigold
 /MaturaMTScriptCapitals
 /MDAlong
 /MDArt
 /MDEasop
 /Mdesb
 /MDGaesung
 /MDSol
 /Mfoxb
 /Mfoxl
 /Mfoxm
 /MicrosoftSansSerif
 /MingLiU
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /MJB
 /MJL
 /MJM
 /MMchonL
 /MMchonM
 /Modern-Regular
 /MoeumTR-HM
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MonotypeSorts
 /Mpaperb
 /Mpaperl
 /Mpaperm
 /Msam10
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /Munhem
 /MVBoli
 /MyungjoL-HM
 /MyungjoXB-HM
 /NamuB-HM
 /NamuR-HM
 /Narkisim
 /Nekoyanagi
 /NemoB
 /NemoL
 /NemoM
 /NemoXB
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewGulim
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /OldEnglishTextMT
 /Onyx
 /OriginalGaramondBT-Roman
 /Oxford
 /Pado
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /PyunjiR-HM
 /QDotum
 /QGulim
 /QGungsuh
 /Raavi
 /RageItalic
 /Ravie
 /Retort
 /RetortOutline
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /SaenaegiR-HM
 /SaenaegiXB-HM
 /SAKURAhira
 /San02B
 /San02L
 /San02M
 /San60B
 /San60L
 /San60M
 /San60R
 /San60SB
 /SanBiB
 /SanBiL
 /SanBiM
 /SanBkM
 /SanBoB
 /SanBoL
 /SanBoM
 /SanBsB
 /SanBsL
 /SanBsU
 /SanCrB
 /SanCrK
 /SanCrL
 /SandArB
 /SandArL
 /SandArM
 /SandArXB
 /SandAtM
 /SandAtXB
 /SandJg
 /SandKg
 /SandKm
 /SandMtB
 /SandMtL
 /SandMtM
 /SandSaB
 /SandSaL
 /SandSaM
 /SandSm
 /SandTg
 /SandTm
 /SanHgB
 /SanHgL
 /SanHgM
 /SanIgM
 /SanKbB
 /SanKbL
 /SanKbM
 /SanKsB
 /SanKsL
 /SanKsM
 /SanMogfilB
 /SanMogfilL
 /SanMogfilM
 /SanMrB
 /SanMrJ
 /SanMrM
 /SanNsB
 /SanNsL
 /SanNsM
 /SanPkB
 /SanPkL
 /SanPkM
 /SanPuB
 /SanPuW
 /SanSrB
 /SanSrL
 /SanSrM
 /SanSwB
 /SanSwL
 /SanSwM
 /Schrift
 /ScriptMTBold
 /SegoeMediaCenter-Regular
 /SegoeMediaCenter-Semibold
 /SeoulGlow
 /SeoulHangangL
 /SeoulHangangM
 /SeoulNamsanB
 /SeoulNamsanEB
 /SeoulNamsanL
 /SeoulNamsanM
 /SeoulNamsanvert
 /SeUtum
 /SgreekMedium
 /Shadow9
 /SHeadG
 /SHeadR
 /ShowcardGothic-Reg
 /Shruti
 /Shusha
 /Shusha02
 /Shusha05
 /SILDoulosIPA
 /SILDoulosIPA93Bold
 /SILDoulosIPA93BoldItalic
 /SILDoulosIPA93Italic
 /SILDoulosIPA93Regular
 /SILManuscriptIPA
 /SILManuscriptIPA93Bold
 /SILManuscriptIPA93BoldItalic
 /SILManuscriptIPA93Italic
 /SILManuscriptIPA93Regular
 /SILSophiaIPA
 /SILSophiaIPA93Bold
 /SILSophiaIPA93BoldItalic
 /SILSophiaIPA93Italic
 /SILSophiaIPA93Regular
 /SimHei
 /SimSun
 /SinGraphic
 /SinMun
 /SnapITC-Regular
 /SohaR-HM
 /Sol
 /SPgoJ1-KSCpc-EUC-H
 /SPgoJ-KSCpc-EUC-H
 /SPgoJS-KSCpc-EUC-H
 /SPgoSE-KSCpc-EUC-H
 /SPgoT-KSCpc-EUC-H
 /SPmuJ-KSCpc-EUC-H
 /SPmuS1-KSCpc-EUC-H
 /SPmuS-KSCpc-EUC-H
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /TaeKo
 /TaeM
 /TaeUtum
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /TahomaSmallCap-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldTh
 /TimesIPAnew
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Tiplo
 /ToodamB
 /ToodamL
 /ToodamM
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TSTNamr
 /TSTPenC
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypewriteB
 /TypewriteL
 /TypewriteM
 /Univers
 /Univers-BlackExt
 /Univers-Black-Normal
 /Univers-BoldExt
 /Univers-Condensed
 /UniversCondensedLight
 /UniversCondensedOblique
 /Univers-Light-Italic
 /Univers-Light-Light
 /Univers-Light-LightTh
 /Univers-Light-Normal
 /Univers-Medium
 /Univers-Oblique
 /Uri
 /Utum
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WoorinR-HM
 /WP-CyrillicA
 /WP-GreekCentury
 /WP-MultinationalARoman
 /YDIBirdB
 /YDIBirdL
 /YDIBirdM
 /YDIBlueB
 /YDIBlueEB
 /YDIBlueL
 /YDIBlueM
 /YDIChungM
 /YDICMjoL
 /YDICMjoM
 /YDICstreB
 /YDICstreL
 /YDICstreM
 /YDICstreUL
 /YDIFadeB
 /YDIFadeL
 /YDIFadeM
 /YDIGasiIIB
 /YDIGasiIIL
 /YDIGasiIIM
 /YDIGirlB
 /YDIGirlL
 /YDIGirlM
 /YDIGukB
 /YDIGukL
 /YDIGukM
 /YDIGurmL
 /YDIHSalM
 /YDIHsangIIB
 /YDIHsangIIL
 /YDIHsangIIM
 /YDIMokB
 /YDIMokL
 /YDIPinoB
 /YDIPinoL
 /YDIPinoM
 /YDIPu
 /YDISapphIIB-KSCpc-EUC-H
 /YDISmileB
 /YDISmileL
 /YDISmileM
 /YDISprIIB
 /YDISprIIL
 /YDISprIIM
 /YDISumB
 /YDISumL
 /YDISumM
 /YDIWebBatan
 /YDIWebDotum
 /YDIWriSin
 /YDIYGO310
 /YDIYGO330
 /YDIYGO340
 /YDIYGO350
 /YDIYGO360
 /YDIYMjO220
 /YDIYMjO230
 /YDIYMjO310
 /YDIYMjO330
 /YDIYMjO340
 /YDIYMjO350
 /YDIYMjO360
 /YDIYSin
 /YetR-HM
 /YGO115
 /YGO125
 /YGO135
 /YGO145
 /YGO155
 /YGO165
 /YGO520
 /YGO530
 /YGO540
 /YGO550
 /YjBACDOOBold
 /YJBELLAMedium
 /YJBLOCKMedium
 /YJBONMOKGAKMedium
 /YjBUTGOTLight
 /YjCHMSOOTBold
 /YjDOOLGIMedium
 /YjDWMMOOGJOMedium
 /YjGABIBold
 /YjGOTGAEMedium
 /YjINITIALPOSITIVEMedium
 /YJINJANGMedium
 /YjMAEHWASemiBold
 /YjNANCHOMedium
 /YjSHANALLMedium
 /YjSOSELSemiBold
 /YjTEUNTEUNBold
 /YjWADAGMedium
 /YMjO115
 /YMjO125
 /YMjO135
 /YMjO145
 /YMjO155
 /YMjO165
 /YMjO45
 /YMjO520
 /YMjO530
 /YMjO540
 /YMjO550
 /YonseiB
 /YonseiL
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

