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요     약

질의실행시간최소화는 분산 데이타베이스 설계에 있어 가장 중요한 목적중의 하나이다. 총시간최소화는 온라인거래처리시스템의 목적인 반

면, 반응시간최소화는 의사결정지원 질의시스템의 목적이다. 본 논문에서는 질의실행시간최소화를 달성하기 위해 질의를 세분화하여 최적의 데

이터베이스 사이트에 할당하는 분석모델을 개발하였으며, 문제해결방법으로 유전자알고리즘을 채택하였다. 총시간최소화 관점에서의 질의실행

계획은 반응시간최소화 관점의 질의실행계획에는 적합하지 않다는 것을 증명하였으며, 그 반대의 경우도 증명하였다. 최대 20개의 조인이 포함

되는 질의를 설계하여 시뮬레이션 실험을 통해 테스트를 수행하였고, 유전자알고리즘과 완전한 전수조사와의 결과를 비교함으로써 모든 경우에 

유전자알고리즘을 채택한 해결책이 최적의 결과를 도출하였음을 증명하였다.
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A Genetic Algorithm for Minimizing Query Processing Time in 

Distributed Database Design: Total Time Versus Response Time
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ABSTRACT

Query execution time minimization is an important objective in distributed database design. While total time minimization is an 

objective for On Line Transaction Processing (OLTP), response time minimization is for Decision Support queries. We formulate the 

sub-query allocation problem using analytical models and solve with genetic algorithm (GA). We show that query execution plans with 

total time minimization objective are inefficient from response time perspective and vice versa. The procedure is tested with simulation 

experiments for queries of up to 20 joins. Comparison with exhaustive enumeration indicates that GA produced optimal solutions in all 

cases in much less time.

Keywords : Distributed Databases, Query Optimization, Sub-Query Allocation, Query Execution Plans, Genetic Algorithms

1. Introduction 1)

Distributed database systems have become very important 

and common in today’s geographically distributed organi-

zations. Two important aspects of distributed database 

design are data allocation and query optimization. It is 

vital to the system performance that the query processing 

be designed to produce the most efficient execution plans 

of users’ queries. Distributed database design and query 

optimization are still an active research area since several 
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researchers have been contributing to the area [Kossmann, 

2000; Cheng et al, 2002; Johansson et al, 2003; Arcangeli 

et al, 2004; Syam, 2005; Gu et al, 2006; Seshadri and 

Cooper, 2007]. The design of distributed query processing 

can be divided into two aspects: query execution order and 

query execution plan or operation allocation [Kossmann, 

2000]. Query execution order indicates the order in which 

the subqueries should be executed. Operation allocation 

indicates the site at which an operation (subquery) should 

be executed. 

Queries can be classified into OLTP (On-Line Transac-

tion Processing) and decision-support types of queries 

[Bergsten et al., 1993; Ziane et al., 1993]. “To inquire 

about air line seat availability” is an example of OLTP 
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type query in the travel industry, which is a highly repe-

titive transaction that requires high throughput. Typically, 

the decision support queries are more complex, less frequent, 

and access a large volume of data in an ad hoc manner. 

An inquiry such as “to provide sales details of specific 

routes by region and travel agent” in the travel industry 

is an example of decision support, which requires low 

response time. 

Thus, OLTP and decision support have different goals and 

thus query execution plans for them need to be designed 

with total time minimization and response time minimization 

objective functions, respectively. The distributed database 

design with total time minimization that is optimal for OLTP 

transactions is inefficient for decision support transactions 

and vice versa. Total time minimization aims at minimizing 

the total resource consumption (I/O, CPU, and Communi-

cation) and maximizing overall throughput of the system, 

while the response time minimization aims at minimizing 

the time between query origination and result receipt. 

While OLTP and decision support queries are most common 

in the business world, previous research paid little attention 

to design distributed databases to optimize both these types 

of queries together. The optimization of both these types 

of transactions will make the database operations efficient, 

thus making the working environment of business decision 

makers more efficient. We are the first to undertake the 

design optimization in distributed databases to minimize 

the execution time of these two transaction types. The 

objective of the paper is to present a methodology for 

distributed database design in which queries are decomposed 

into subqueries and these subqueries are allocated among 

the nodes of the network so that the two objective functions 

(minimization of total execution time and minimization of 

response time) are optimized in order to meet the processing 

requirements of OLTP and Decision Support transaction 

types. The outcomes of our approach are selection of 

execution sites for operations of a given distributed query 

plan and comparison of allocations under the two objective 

functions. 

While most previous works focused on query execution 

order, operation allocation has received little attention. In 

today’s geographically distributed organizations, since more 

sophisticated data access is needed by managers in areas 

such as decision support and deductively augmented database 

systems, answering OLTP and decision support type queries 

often requires a large number of joins [Martin et al., 1990; 

Caudrado, 1995; Florin and Alin, 2008]. If a query references 

n relations, and each relation   has   copies, ≤ ≤ , 

then a straightforward enumeration algorithm for selecting 

one copy of each relation takes time )(
1∏=

n

i
iXO  [Martin et 

al., 1990]. The problem of finding the allocation that yields 

the minimum cost is NP-hard [Kossmann, 2000]. In order 

to deal with this hard problem, we use Genetic Algorithms 

[Goldberg, 1989] to arrive at near optimal solution. Genetic 

algorithm is a heuristic solution that has been used to 

solve intractable problems in database design [Song and 

Gorla, 2000; Cheng et al, 2002; Du et al, 2006].

The organization of the paper is as follows. Next, we 

present prior research in distributed database design and 

query processing, highlighting the research gaps. Section 

2 has discussion of cost models, including query processing 

model and analytical cost models for total time and response 

time. Section 3 has research methodology using genetic 

algorithm; section 4 has illustration of our procedure for 

both objective functions: total time and response time 

minimizations along with time performance analysis. Section 

5 has conclusions.

1.1 Previous Research

In order to improve distributed database performance, 

previous researchers conducted studies in both data allocation 

(how to allocate data fragments to sites) and operation 

allocation (how to allocate subqueries to sites), though 

operation allocation did not receive as much attention. 

Apers [1988] developed a methodology for identification 

and allocation of vertical and horizontal fragments based 

on the user queries/updates in distributed databases, with 

the objective of minimizing total transmission cost. They 

compared both optimal and heuristic solutions using static 

and dynamic processing schedules. The focus of their study 

was fragment allocation, but not operation allocation.

Martin et.al. [1990] conducted simulation experiments to 

compare four heuristic algorithms (branch-and-bound, greedy, 

local search, and simulated annealing) for assignment of 

sub-queries. The objective function is total query cost 

comprising of local processing and communication costs. 

They did not address subquery parallelism or response 

time objective functions. Frieder and Baru [1994] propose 

run-time operation allocation policies for hierarchically 

structured, hypercube-based multicomputer system. The 

site assignments are not determined a priori, instead, they 

are assigned during the execution of a query. Tamhankar 

and Ram [1998] proposed an integrated methodology to the 

problems of data fragmentation, replication, and fragment 

allocation in distributed databases. Cheng et al [2002] used 

genetic algorithms to solve data partitioning problem after 

modeling it as a traveling salesman problem. Baiao et al 

[2004] propose a methodology for distribution design for 
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Object DBMS, using both vertical and horizontal parti-

tioning techniques.

Kossmann [2000] provides a survey of techniques useful 

for query processing in distributed databases. Cornell and 

Yu [1989] propose an integrated methodology to determine 

the optimal allocation of relations and query operations to 

sites to minimize the communication costs. They propose 

two-step approach. First, they decompose queries into 

individual relational algebra operations and use them to 

determine the optimal allocation of relations and operations 

to sites. It was formulated as a linear integer-programming 

problem with the objective function of minimizing total 

communication costs. They provide response time analysis 

based on queuing network model. However, their objective 

function includes communication costs only [March and 

Rho 1995] and their response time calculation does not 

consider the parallelism among the query executions of 

different sites.

March and Rho [1995] extended the work of Cornell 

and Yu [1989] and used the objective function of total 

system cost comprising of storage, I/O, CPU, and com-

munication. After decomposing relations and transactions, 

they apply iterative genetic algorithm to determine the 

‘optimal’ allocation of fragments and operations. The authors 

did not consider response time objective function in their 

analysis and they suggest consideration of inter-operation 

parallelism as a potential research direction. Kulkarni and 

Jain [1993] study the interaction effect of concurrent 

transactions in distributed databases using simulation. 

Johnsson, March, and Naumann [2003] extend the previous 

work of March and Rho [1995] by incorporating network 

latency time and parallel processing among the nodes.

There have been fewer studies that contributed to the 

design of query execution plans in distributed databases. 

March and Rho [1995] state “It is extremely important to 

recognize the ability of distributed systems to do parallel 

processing, because it is a key component in achieving 

fast processing” (p. 315). Furthermore, OLTP and decision 

support type of transactions require different objective 

functions. We extend previous research by considering 

both the total time and response time minimizations in 

the objective function, so that OLTP and decision support 

queries can be optimized, respectively. Thus, our research 

makes a contribution in the design of query execution 

plans in the distributed databases.

We include the response time cost model to the operation 

allocation problem by considering inter-operation parallelism 

and recursive cost function. We consider explicitly query 

tree and query execution order in the models. Our simulation 

experiments using genetic algorithm are run in replicated 

distributed database environment with complex queries. 

Since any database environment consists of both OLTP and 

Decision Support type of transactions, our contribution in 

this research considering both types will be valuable to 

the industry. We incorporate the allocation and parallel 

processing of subqueries for handling OLTP and Decision 

Support type transactions.  

2. Development of cost models

2.1 Query Processing

The first step of query processing in a distributed 

context is to transform a high-level global query into an 

efficient execution strategy (the ordering of operations) on 

local databases [Ozsu and Valduriez, 1991]. The set of 

execution order of subqueries and their precedence relation-

ships can then be represented as a query tree. Each 

operation in the query tree is viewed as a separate 

subquery with one or two input relations and an output 

relation. An input relation is either a relation maintained 

by the system or the output relation of another query. 

The output of a subquery is an intermediate relation, which 

is stored at the site it is referenced and deleted after the 

query is answered. We consider the relational algebra 

operators: projection, selection and join. Other operations 

can be included without altering the operation allocation 

algorithm proposed in this research. Also note that we 

assume that the structure of the query, i.e., the query 

execution order, is fixed prior to operation allocation. Our 

assumption is consistent with those of previous researches 

in distributed databases as such some ad hoc execution 

orders for designing optimization algorithms for distributed 

query processing are assumed [Kossmann, 2000].

There is a site set associated with each node in the 

query tree. The members of the site set for a leaf node 

are those sites that hold a copy of that relation. The site 

set for an operation node contains those sites that can 

perform the operation. In general, selection and projection 

operations requiring relations should be executed at only 

those sites that hold a copy of relations referenced so 

that there is no transmission of a relation required at the 

site of the operations, but join operations can be executed 

at any site. In the query tree, cost is associated with the 

operation nodes representing local processing times, including 

estimated CPU processing time and I/O time for its execu-

tion. The communication cost is associated with transmitting 

the output relation from the site of source node to the 

site of the receiving node.  
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2.2 Cost Models

As stated earlier, we investigate the subquery allocation 

problem using two types of objective functions: (1) total 

time minimization and (2) response time minimization. 

The total time is the sum of all cost (time) components, 

while the response time is the elapsed time from the 

initiation to the completion of the query, including time to 

transmit the results back to the site where the query has 

originated. Furthermore, we assume pre-compiled queries 

in our cost computations.

Let T, I, and K be the set of all sites, relations, and 

queries, respectively. A query transaction k can be 

decomposed into j subqueries (operations). Following is 

the list of variables.

(1) jt
kY  specifies the site at which each subquery is 
executed. jt

kY  is 1 if subquery j of query k is done 
at site t, otherwise it is 0. We also introduce jp[m]t

kY  

where p[m] represents two previous operations for 

join operation j, and m is 1 for the left previous 

operation and 2 for the right previous operation in 

the query tree. So jp[m]t
kY  is 1 if the left (m = 1) or 

right (m = 2) previous operation for join operation 

j of query k is done at site t, otherwise it is 0.

(2) Xit, representing the data allocation, is 1 if relation i 

is stored at the site t. otherwise it is 0. ij
kZ  is 1 if 

input (or intermediate) relation(s) i is referenced by 

subquery j of query k. We also introduce ijp[m]
kZ  where 

p[m] represents two previous operations for join 

operation j; ijp[m]
kZ  is 1 if input (or intermediate) relation 

i is referenced by the left (m = 1) or right (m = 2) 

previous operation for join operation j of query k, 

otherwise it is 0.

The operation allocation problem can be expressed as 

follows:

Given: itX  (data allocation; relation i stored at site t) and 
ij
kZ  (relation (or intermediate result) i referenced 
by subquery j of query k)

Find: jt
kY  (operation allocation; site t for subquery j of 
query k)

2.3 Total Time Model

The total time for each query is the sum of local pro-

cessing times and communication times for all subqueries.  

Total Time = (LP +  COM )j
k

 j
k

j∑ , where j
kLP  represent the 

local processing time of the subquery j (a node in the query 

tree) of a query k. j
kCOM  represents the communication 

time of transmitting the input relation(s) to the site at 

which the subquery j of a query k is being executed.

2.3.1 Local processing time ( j
kLP ) 

The local processing time of a subquery depends on an 

operation type, the size of the input relation(s), the CPU 

speed and the I/O speed of the site selected. We assume 

that CPU processing is proportional to the amount of data 

accessed and that I/O time is proportional to the number 

of blocks read or written. 

(A) For a selection or projection on a relation, the local 

processing time for the subquery j of the query k 

is defined as: 

j
kLP  = Y (IO  Z B  CPU   Z Bjt

k
t t ij

k
i ij

k
t ij

k
i ij

k∑ ∑ ∑+ )         (1)

where Bij
k
 is the number of blocks of relation i accessed 

by subquery j of query k,

IOt  is the I/O time of site t in msec for trans-

ferring 4k byte page into main memory,

CPUt  is the CPU time of site t in msec per 4k byte 

page for selection and/or projection.

(B) We also assume that the intermediate result of 

each unary or join operation is transmitted directly 

to the next join site and stored at the next join 

site before the execution of the next join operation. 

As such, the local processing time for the join j 

of the query k is defined as:

j
kLP  =  Y  IO   Z Bjt

k
t mi ijp[m]

k
mt ijp[m]

kρ∑∑∑  +        (2a)

Y  (IO   Z B  CPU   Z Bjt
k

t t ij
k

i ij
k

t ij
k

i ij
k∑ ∏ ∏+ )            (2b)       

where ρm  represents the selectivity of the two previous 

operations (m = 1 or 2), where the 

selectivity is the ratio of output relation size and 

input relation size, and

Bijp[m]
k
 is the size of an input (intermediate) relation 

where p[m] represents two previous 

operations of  the join operation j (m is 1 for the 

left and 2 for the right operation).

Note that ρm  can represent selection, projection or join 

selectivity. (2a) represents the I/O time to store the inter-

mediate results of the previous operations to the site of 

the current join operation. (2b) represents the I/O and CPU 

processing times for the current join operation. Note that 

we convert Bijp[m]
k
 (the size of intermediate results being stored 

at the join site) to Bij
k
 (the size of same intermediate results 

being retrieved for the current join operation) for notational 
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(Fig. 1) Four Joining Scenarios

convenience so that Bij
k
 will be used for the next join 

operation with the join selectivity of the current join 

operation.

2.3.2 Communication time ( j
kCOM )

When either of the relation(s) to be joined is not produced 

at the site at which the join operation is performed, commu-

nication for join operations is needed, and is expressed as 

follows:

j
kCOM  = Y  Y  C   ( Z Bjp[m]t

k
ptm jp

k
tp ijp[m]

k
i ijp[m]

k∑∑∑ ∑ )

where Ctp  is the communication cost between site p and 

site t in msec per 4k byte page.

Note that if a previous operation and the join operation 

are executed at the same site (t=p), then Ctp =0. Commu-

nication for sending the final result is also needed if the 

final operation is not performed at the query originating 

site. Since there is only one previous operation for the final 

operation, we assume that Zijp[2]
k
 for all i is 0 (also Bijp[2]

k
 = 

0). It should be noted that we consider communication 

cost to include data transmission cost. However, in real 

world, communication cost may also include time to synch-

ronize the two CPUs -- we ignore this synchronization 

time, since this is usually a fixed overhead cost and it is 

not variable like data transfer cost.

2.4 Response Time Model

In a distributed database system, it is possible to decom-

pose a query into subqueries that can be processed in 

parallel and also their intermediate relations can be trans-

mitted in parallel to the required site. Two types of parallel 

execution are possible: (1) intra-operation parallelism, and 

(2) inter-operation parallelism [Srivastava and Elsesser, 

1993]. A typical example of intra-operation parallelism is 

pipelining of a single join operation, by which two sites 

work in parallel; that is, the site that request remote data 

will begin its join processing as soon as the first tuple or 

packet of data has arrived, whereas in sequential processing, 

the site receiving data will not begin its join processing 

until all of the required data has arrived. With inter- 

operation parallelism, several subqueries in a single query 

can be executed in parallel. In calculating response time, 

however, we limit the possible parallelism to the only 

immediate child nodes of join operation and not among 

the child nodes of different join operations.  

Response time is calculated by taking into consideration 

the possibility of performing local processing and data 

transmission in parallel under the condition that the opera-

tions are performed at different sites as mentioned in the 

previous section. The response time of query k is:

Response time RT
k
j  = COM (p[1])j

k
 + LP k

j (p[1]) + RT k
j (p[1])

     where RT
k
j (p[1]) is the recursive function for the 

response time. 

The first term COM (p[1])j
k

 is to calculate the communi-

cation time sending the results to the query originating 

site ( ijp[2]
kZ  for all i is 0 and Bijp[2]

k
 = 0) and the LP k

j (p[1]) 

refers to the local processing time of the final operation. For 

the recursive function RT k
j (p[1]) (but we will use RT k

j  for 

convenience), we calculate the cost as follows. Four sce-

narios exist depending upon sites at which the join operation 

j and the two preceding operations p[1] and p[2] are 

executed. Figure 1 shows the four scenarios with three 

sites for operation allocation; in each scenario, the bottom 

two sites denote are used for preceding operations and 

the top site is used for join operation.

2.4.1 Scenario - 1:

The join operation j and the sites two preceding 

operators p[1] and p[2] are executed at the same site; 

that is, 0 CYY tp
k
jp[2]t

k
jp[1]t = , 0 CYY tp

k
jt

k
jp[1]t =  and 0 CYY tp

k
jp[2]t

k
jt =  then 

RT
k
j  can be calculated by using the equation. 

LP
k
j  + ∑m

k
j  (p[m]LP  + (p[m])RTk

j )
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Here, LP k
j is the local processing time for sub query j, 

(p[m])LPk
j is the local processing time for the preceding left 

(m=1) or right (m=2) operation (i.e. subsub query). These 

local processing times are calculated using the equations 

introduced in the previous section. (p[m])RTk
j  is the (response) 

time when a preceding operator is available for local 

processing.

2.4.2 Scenario -2:

The join operation j and the two preceding operators 

p[1] and p[2] are performed at three different sites. In 

this case the three operators can be run in parallel. Then 

the response time of the entire group is computed as the 

maximum of resource consumption of individual operators 

and the usage of all the shared resources (such as 

communication times) [Kossman, 2000]. Then 
k
jRT  is given 

by

Max { ,LPk
j (3a)

(p[1])LPk
j  + (p[1])RTk

j , (3b)

(p[2])LPk
j  + (p[2])RTk

j , (3c)

COM (p[1])j
k

 + COM (p[2])j
k

} (3d)

where COM (p[1])j
k

 = )BZ( CYY k
ijp[1]i

k
ijp[1]tp

k
jp

k
jp[1]t ∑

COM (p[2])j
k

 = )BZ( CYY k
ijp[2]i

k
ijp[2]tp

k
jp

k
jp[2]t ∑

In the above, (3d) represents shared resource consumption, 

which is the communication time. (3a) is the local processing 

time for subquery j and (3b) and (3c) are the processing 

times for the two preceding operations of subquery j. The 

communication costs will be additive, since those are the 

overheads on the receiving node, as represented by (3d).

2.4.3 Scenario -3:

The sites at which two preceding operations of subquery 

j are performed are different and the join subquery j uses 

one of these sites. There is no communication cost between 

one of the preceding operators, say p[1], and the operator 

j. That is, 0 CYY tt
k
jt

k
jp[1]t = , 0 CYY tp

k
jt

k
jp[2]p ≠  and 0 CYY tp

k
jp[2]p

k
jp[1]t ≠ , 

then 
k
jRT  is given by:

Max { 
k
jLP  + (p[1])LPk

j + (p[1])RTk
j , (4a)

(p[2])LPk
j + (p[2])RTk

j ,  (4b)

COM (p[2])j
k } (4c)

where COM (p[2])j
k  = )BZ( CYY k

ijp[2]i
k
ijp[2]tp

k
jt

k
jp[2]p ∑

In the above since sub query j and the left previous 

operation p[1] are executed at the same site, the local 

processing times of the two sites need to be added (4a). 

Since right previous operation p[2] is executed at a 

different site, its local processing time (included in (4b)) 

can be executed in parallel. In addition, the communication 

time (4c) can be implemented in parallel as well.

2.4.4 Scenario - 4:

In secenario-4, the two preceding operations of subquery 

j, p[1] and p[2], are executed at the same site, while the  

subquery j is executed at a different site. There is 

communication time involved in shipping data from both the 

preceding operations p[1] and p[2] to the site of subquery 

j. That is, 0 CYY tp
k
jt

k
jp[1]p ≠ , 0 CYY tp

k
jt

k
jp[2]p ≠  and 0 CYY pp

k
jp[2]p

k
jp[1]p = . 

Also, there will be no parallelism between the operations 

p[1] and p[2]. Then 
k
jRT  is given by

Max { 
k
jLP , (5a)

(p[1])LPk
j  + (p[2])LPk

j  + (p[1])RTk
j  + (p[2])RTk

j , (5b)

COM (p[2])j
k

+ COM (p[2])j
k

} (5c)

where (p[1])COMk
j  = )BZ( CYY k

ijp[1]i
k
ijp[1]tp

k
jt

k
jp[1]p ∑

COM (p[2])j
k

 = )BZ( CYY k
ijp[2]i

k
ijp[2]tp

k
jt

k
jp[2]p ∑

In the above, since subquery j is executed at a different 

site than the preceding operators, its local processing of 

subquery j (5a) can be done in parallel to the communi-

cation time (5c) and the processing times of p[1] and p[2] 

. Since the preceding operators are executed at the same 

site, their local processing times are additive (4b). Also, 

the communication costs will be additive, since those are 

the overheads on the receiving node. Above equations 

hold whether previous operations are joins, selections, or 

projections, or other relational algebra operators. 

The stopping condition of the recursive function RT is 

as follows. We define: if p[m] in ijp[m]
kZ  is equal to zero in 

the response time recursive function, where zero for p[m] 

means that the previous operation for this operation j 

(subquery) is original relation. In scenarios 2 and 3, 

parallelism between the preceding operations p[1] and p[2] is 

implied. It is assumed there is no clash in data access bet-

ween the two preceding operations, i.e. i
k
ij

k
ij   0  (p[2]) Z* (p[1])Z ∀= , 

otherwise local processing times can be additive in the 

worst case.

2.5 Cost Coefficients

We use the relative cost coefficients associated with 

three cost components instead of using the actual measures 

since the purpose of this research is to evaluate the 

relative performance of operation allocation schemes in a 
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t is the iteration number

P(t) is the solution pool at the iteration t
p(t) is a candidate solution 

t  Å 0
Generate initial solution pool, P(t);

Calculate the fitness of each solution E(t) based on total time or response time;

While t<50 or there is improvement in consecutive generations do
Select p(t) from P(t) using ‘stochastic reminder without replacement’

Produce off springs by applying crossover and/or mutation with probability

Replace the worst fitness chromosomes by the best fitness chromosomes;
t Å t+1;

end;

(Fig. 2) General Sketch of the Genetic Algorithm

given distributed database environment. We assume that 

the communication network is relatively high-speed wide 

area networks whose data transmission speed is almost 

equivalent to local area networks [Atkins and Norris, 

1995]. A typical ratio of communication cost to local I/O 

cost is 1:1.6 [Kossmann, 2000]. Furthermore, the typical 

average I/O speed for processing one page block is 20 

msec and the CPU speed 1-5 msec [Kossmann, 2000]. So 

throughout this research we use: I/O cost coefficient (IOt) 

is 20 per page, CPU cost coefficient (CPUt) 1 per page, 

and communication cost coefficient (Ctp) 12 per page, 

unless otherwise mentioned.

3. Methodology

As stated earlier, we will develop our solution procedure 

using genetic algorithm due to intractability of the 

distributed database design problems. Genetic algorithms 

have been used by other researchers [Kumar and Pathak, 

1995; Cheng et al, 2002; Gorla, 2001; Johansson et al, 2003; 

Du et al, 2006] to solve difficult optimization problems in 

database design. When compared to other heuristic algorithms 

[Li and Jiang, 2000], Genetic Algorithm (GA) provides 

global ‘optima’ with less time. Furthermore, the distributed 

database design problems addressed in this research can be 

classified into combinatorial optimization problems [Koss-

mann, 2000]. Most combinatorial optimization problems are 

NP-hard, and so enumeration algorithms are inefficient to 

solve large scale NP-hard problems. Thus heuristics such as 

genetic algorithms, which can obtain nearly optimal solutions 

within a reasonable time, are proposed as alternative 

solution approaches [Goldberg, 1989; Michalewicz and Fogel, 

2004].

Any genetic algorithm must have the following five 

components [Goldberg, 1989]: (1) A genetic representation 

of a solution to the problem, (2) A way to create an 

initial population of solutions, (3) An evaluation function 

that evaluates solutions, (4) Genetic operators that affect 

the population of offspring, and (5) Values for the 

parameters that the genetic algorithm uses (population 

size, probabilities of applying genetic operators).

Each solution (chromosome) in the GA is a string of 

integers, where the string length represents number of 

operations and each integer at a particular position in the 

string represents the site number selected for the 

operation in that position. The fitness of each individual 

member in the population is the query execution cost 

calculated according to the equations presented in the 

previous section. To select a member, we adopt a 

technique termed “stochastic remainder without replacement” 

[Goldberg, 1989]. Its basic idea is that chromosomes with 

higher-than-average fitness generate more than one 

offspring at the next generation, and it works as follows: 

1) The fitness is normalized with the average value of 

the fitness. The normalized fitness of a chromosome is 

equal to the fitness of that chromosome divided by the 

average value of the fitness of all chromosomes in the 

population. 2) Chromosomes with higher-than-average 

fitness will have more than one offspring, and those with 

below-average fitness will have less than one offspring 

on the average.  3) After the number of offspring has 

been determined as above, the remainder of the new 

population is then filled up by choosing another offspring 

for each of the remaining chromosomes with probability 

equal to the fractional part of the normalized fitness until 

the total number of offspring equals the population size. 

The parameters for crossover rate and mutation rate 

were adapted primarily based on a large empirical study 

by [Schaffer et al., 1989]. We also incorporate "elitism" 

[Davis, 1991], in which the GA keeps track of the best 

fitness chromosome in the population. More description 

about GA can be found from [Goldberg, 1989]. A general 

sketch of the Genetic Algorithm based on the procedures/ 

parameters outlined in (Fig. 2). 
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Relation Cardinality
Tuple 

Size

Relation Size 

(bytes)

Relation Size

(blocks)

Students (F3) 20 000 45 900 000 225

Enrolls (F1) 10 000 25 250 000 63

Courses (F2) 500 60 30 000 8

<Table 1A> Database Statistics

Site

1 2 3 4

Communication 1 0 13 12 11

Coefficients 2 13 0 11 12

3 12 11 0 13

4 11 12 13 0

I/O Coefficients 20 19 18 21

CPU Coefficients 1 1 1 1

<Table 1B> Communication, I/O, and CPU Cost Coefficients

(20)

f5

f6 f7

6

Students
1

3

Enrolls

2

5

F1 F2

F3
f4

4

(225)

(8)
(63)

Courses

(12)

(4)(51)

f8 (24)

(Fig. 3) Example Query Tree

4. Illustration

Consider a replicated distributed database with 4 sites 

and 3 relations from a university database: Students (S#, 

Sname, Major), Courses (C#, Cname, Dept, Credits), and 

Enrolls (S#, C#, Grade), the database statistics of which 

is provided in Table 1A. It is also assumed that the size 

of page block is 4k bytes, and the length of attributes 

measured in bytes are: S# (15), Sname (20), Major (10), 

C# (8), Cname (20), Dept (30), Credits (2), Grade (2). The 

allocation of the relations to sites is as follows: Relation 

(F1) is stored in sites 1 and 2, relation (F2) at sites 2 

and 3, relation F3 is stored at sites 3 and 4. As stated 

earlier, the average cost coefficients are assumed to be in 

the ratio of 20:1:12 for I/O, CPU, and Communication, 

respectively and actual cost coefficients are shown in 

Table 1B.

The following SQL statement will be used and the 

corresponding query tree is shown in Figure 3. It is 

assumed that the query-originating site is 4, and it is the 

node 6 in (Fig. 3).

SELECT STUDENTS.S#, STUDENTS.Sname, COURSES. 

Cname

FROM   STUDENTS, COURSES, ENROLLS

WHERE  STUDENTS.Major = ‘CIS’

AND    ENROLLS.Grade  > ‘C’

AND    STUDENTS.S# = ENROLLS.S#

AND    ENROLLS.C# = COURSES.C#

By using simple estimation techniques, the results of 

each operation execution are as follows: (Note that ρs, ρp  

and ρ j: the selectivity for selection, projection and join 

respectively)

operation 1: σgrade > 'C' (Enrolls)  f 4⇒  

(63 x 0.8 (ρs) = 51 blocks)

operation 2: ΠC#, Cname Courses   f5( ) ⇒  

(8 x 0.47 (ρp) = 4 blocks)

operation 3: σmajor='CIS' (Students)  f 7⇒

(225 x 0.05 (ρs) = 12 blocks)

operation 4: f 4 f5  f 6c#=c# ⇒

(f4 x f5 x ρ j  = 51 x 4 x 0.1 = 20 blocks)

operation 5: f 6 f 7  fS# = S# ⇒  

(f6 x f7 x ρ j  = 20 x 12 x 0.1 = 24 blocks)

The results of the above size estimation are also shown 

in (Fig. 3). 

4.1 Total Time Minimization

The fitness function used in the GA is based on the 

total time. The optimal solution was obtained in the third 

generation. The final solution, based on the total time mini-

mization objective function, is 22323 (operations 1,2, and 4 

are assigned to site 2, and operations 3 and 5 are assigned 

to site 3). The cost calculations are shown in <Table 2>. 

We can see that the total time to execute the query is 

16488 time units, which comprises 15216 of I/O, 740 of 

CPU, and 532 of communication time.
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Subquery Assigned Site I/O Time CPU Time Local Total
Comm. Time

1 2

1 2 1197 63 1260 - -

2 3 152 8 160 - -

3 4 4050 225 4275 - -

4 2 4921 204 5125 0 44

5 3 4896 240 5136 220 156

* 6 4 0 0 0 312 -

* 6 is the query originating site

<Table 3> I/O, CPU, and Communication Times for Response Time Minimization Problem

Subquery Assigned Site I/O Time CPU Time
Local Processing

Time

Comm. Time

      1                        2

1 2 1197 63 1260 - -

2 2 152 8 160 - -

3 3 4050 225 4275 - -

4 2 4921 204 5125 - -

5 3 4896 240 5136 220 -

* 6 4 0 0 0 312 -

Total 15 216 740 15956 532 -

* 6 is the query originating site

<Table 2> I/O, CPU and Communication Times for Total Time Minimization Problem

4.2 Response Time Minimization

The same example is used for the purpose of finding 

optimal operation allocation with the objective function of 

minimizing response time. The optimal solution from 

running the genetic algorithm is 23423 (i.e. operation 1 is 

assigned to site 2, operations 2, 4, and 5 are assigned to 

site 3, and operation 3 is assigned to site 4). The I/O, 

CPU, and Communication costs are given in <Table 3>.  

For the given optimal operation allocation, the response 

time is 7,708 units.

4.3 Analysis of Solutions

In the above example, as an illustration we used two 

copies for each of the basic relations: Enrolls at sites 1 

and 2, Courses at sites 2 and 3, and Students at 3 and 4. 

In the total time minimization objective, both operation 1 

( (Enrolls)σ ) and operation 2 (  )Courses(Π ) were assigned 

to site 2. In the response time minimization, operations 1 

and 2 are assigned to different sites, 2 and 3 respectively 

- this resulted in communication time. Similarly the algorithm 

assigned operation 3 ( (Students)σ ) to site 3, the same 

site used for operation 5 (  f7 f6 S# = S# ) in total time 

minimization case. On the other hand, in response time 

minimization case, operation 3 and operation 5 were assigned 

to different sites (sites 4 and 3 respectively) in order to 

allow parallelism. In this analysis, the time unit is msec 

based on processing one page block as stated in section 2.5.

With the total time minimization objective function, the 

total resource consumption is 16,488 time units. On the 

other hand, with response time minimization, the total 

resource consumption is 17,355 units, which represents an 

increase of more than 5% over the execution plan with 

total time minimization. Furthermore, with total time mini-

mization, the total time that is needed to execute the 

query is 16,488 units. With the same execution plan, the 

response time is 11,143. With the response time objective 

function, the given execution plan results in a response 

time of 7,708 time units. This represents a reduction of 

31% in response time compared to the solution with total 

time minimization objective. This implies that using total 

time minimization objective function will be very inefficient 

with respect to response time. Thus, the query execution 

plans should be designed with the appropriate objective 

function into consideration. 

In the example, we allowed two copies of each relation. 

In effect, with total time minimization the five operations 

were allocated to two sites (sites 2 and 3) whereas in 

response time minimization case they were assigned to 

three sites (sites 2,3, and 4). In a fully replicated database, 

the “total time minimization allocation” will result in the 

operations being allocated to only one site (the one with 

least I/O and CPU cost coefficient); in this case total 

time and response time will be the same, since there is 

no parallelism possible. On the other hand, the “response 

time minimization allocation” will result in many sites being 

used for the operations; this will result in lot higher total 

time compared to the total time in the case of “total time 

minimization allocation”, because of increased communication 

costs. 
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In summary, total time minimization is achieved when 

queries use as few sites as possible, which will result in 

minimum data communication costs. In the extreme case, 

all subqueries can be executed at the same site. Response 

time minimization can be achieved through a large number 

of parallel executions and parallel transmissions when 

subqueries are assigned to as many sites as possible. 

Thus, there is performance difference with the execution 

plans under these two conflicting objective functions. 

4.4 Time Performance of Algorithm

In order to compare the results from GA with optimal 

(through exhaustive enumeration), we ran two types of 

experiments: one keeping the cost coefficients constant 

and the other varying cost coefficients. In case 1, I/O, 

CPU, and communication cost coefficients are fixed at 20, 

1, and 12, respectively. We assumed network to consist 

of 5 sites. Using a three-join query, we solved two 

problems, one with objective function of total time and 

the other with response time. We assume that each 

relation is allocated two sites. The solution obtained by 

GA matched the optimal solution obtained by exhaustive 

enumeration. The exhaustive enumeration has a solution 

space of about 2000 and it took about 2 minutes to 

evaluate. The run time for GA is less than half of that 

required for exhaustive enumeration. We solved two 

additional problems, using the four-join query. The size 

of solution space by exhaustive enumeration is about 

5,000 and it took 20 minutes to solve, while GA took 

about 1 minute. Furthermore, the GA found the optimal 

solutions for both the problems. In case 2, we varied the 

cost coefficients for I/O, CPU, and communication and 

solved four more problems, with 3-join and 4-join queries 

and with both the objective functions. The GA found the 

optimal solutions for all the problems. 

In order to investigate the run-time efficiency of the 

operation allocation, we conducted two experiments, one 

by varying the number of joins from 3 to 20 using 5 

database sites and the other by varying the number of 

sites from 3 to 12 using ten-join query.  Figure 4 shows 

run time performance of GA varying number of joins. 

Exhaustive enumeration was performed for only two 

cases (3-&4-joins) since cases for more than 4-join were 

meaningless in terms of run-time comparison. For 3-join 

case, exhaustive enumeration took 110 seconds, while GA 

took 10 seconds. For 4-join case, they were 1200 and 19 

seconds, for exhaustive enumeration and genetic algorithm, 

respectively. Figure 5 shows the run time efficiency of 

GA with a 10-join query, varying the number of sites. 

With two copies each for a relation, exhaustive enume-

ration results in a large solution space, so we assumed 

one copy per relation. This results in a solution space of 

59,049 for 3-site problem and 1,048,576 for 4-site problem. 

The run time of GA for 3-site case is 30 seconds and 

for exhaustive enumeration it is 2.5 hours; for a 4-site 

case, GA took 40 seconds and exhaustive enumeration 

took 43 hours. The run time of GA varied linearly with 

number of sites, while it was exponential for exhaustive 

enumeration.

5. Conclusions

In this paper we have presented a solution technique 

for designing query execution plans in distributed databases. 

Our solution technique solves the problem of allocating 

operations (subqueries) of a query to individual sites of a 

network, with two objective functions: total time minimi-

zation and response time minimization. Comprehensive 

cost models, including local processing and communication 

costs, considering parallelism of subqueries were developed 

for both objective functions based on the query trees that 

represent a set of operations with their precedence rela-

tionship. The OLTP type transactions require high through-

put, hence total time minimization objective function is 

appropriate. The Decision Support type transactions require 

low response time, thus response time minimization objective 



분산 데이타베이스에서의 질의실행시간 최소화를 위한 유전자알고리즘: 총 시간 대 반응시간  305

is appropriate. Our results show that the optimal alloca-

tions are quite different with the two objective functions: 

total time and response time minimization. Response time 

minimization could be achieved through a large variety of 

parallel execution and parallel transmission. In order to 

maximize these parallelisms, subqueries were allocated to 

as many sites as possible. On the other hand, total time 

minimization could be achieved when queries are executed 

by using a minimum number of sites. In extreme case, all 

subqueries could be executed at the same site if all 

necessary fragments reside at one site. Minimization of 

total system operating cost usually attempts to minimize 

resource consumption (CPUs, I/Os, and communication 

channels) -- more transactions can be processed for a 

given time period i.e., the system throughput is increased. 

On the other hand, a decrease in response time may be 

obtained by having a large number of parallel executions 

to different sites, requiring a higher resource consumption, 

which means that the system throughput is reduced. 

Furthermore, our results showed that the query execution 

plans with total time minimization results in higher 

response time compared to plans with response time 

minimization. Our results have shown the GA produced 

optimal solutions, as compared with the exhaustive enume-

ration for the problems that could be tested. We have 

also shown the efficiency of the genetic algorithm in 

solving complex queries, up to 20-join query tree. We 

believe our research provides a better understanding of 

the underlying query execution plans under the objectives 

of total time minimization and response time minimization. 

In our research, we assumed that query execution order 

as given and determined the operation allocations. It 

should be noted that the query execution order and the 

operation allocation are two interdependent decisions. The 

research can be extended by integrating both the sub- 

problems and providing the optimal query execution plans. 

The GA algorithm developed in this research can be 

extended to include the additional sub-problem. 

References

[1] P.M.G Apers, “Data Allocation in Distributed Database 

Systems,” ACM Trans. on Database Systems, Vol.13, No.3, 

pp.263-304, Sep., 1988.

[2] J. Arcangeli, A. Hameurlain, E. Migeon and F. Morvan, 

“Mobile Agent Based Self-Adaptive Join for Wide-Area 

Distributed Query Processing,” Journal of Database Mana-

gement, Vol.15, No.4, pp.25-44, 2004.

[3] J. Atkin and M. Norris, Total Area Networking: ATM, Frame 

Relay and SMDS Explained, John Wiley & Son, New York, 

N.Y., 1995

[4] F. Baiao, M. Mattoso and G. Zaverucha, “A Distribution 

Design Methodology for Object DBMS,” Journal of Distri-

buted and Parallel Databases, Vol.16, No.1, pp.45-90, 2004.

[5] B. Bergsten, M. Couprie and P. Valduriez, “Overview of 

Parallel Architectures for Database,” The Computer Journal, 

Vol.36, pp.734-740, Aug., 1993.

[6] C-H Cheng, W-K Lee and K-F Wong, “A Genetic Algorithm- 

Based Clustering Approach for Database Partitioning,” IEEE 

Transactions on Systems, Man, and Cybernetics, Vol.32, No.3, 

pp.215-230, 2002.

[7] D.W. Cornell and P.S. Yu, “On Optimal Site Assignment for 

Relations in the Distributed Database Environment,” IEEE 

Transactions on Software Engineering, Vol.15, No.8, pp.1004- 

1009, Aug., 1989.

[8] J. Cuadrado, Optimize Database Queries, Byte, pp.57-63, July, 

1995.

[9] L. Davis, Handbook of Genetic Algorithms, Van Nostrand 

Reinhold, New York, N.Y., 1991.

[10] J. Du, R. Alhajj and K. Barker, “Genetic Algorithms Based 

Approach to Database Vertical Partitioning,” Journal of 

Intelligent Information Systems, Vol.26, No.2, pp.167-183, 

2006.

[11] W. Du, M. Shan and U. Dayal, “Reducing Multidatabase 

Query Response Time by Tree Balancing,” Proceedings of 

the 1995 ACM SIGMOD International Conference on Mana-

gement of Data, San Jose, California, pp.293-303, May, 1995.

[12] R. Florin and D. Alin, “Sketches for Size of Join Estimation,” 

ACM Transactions on Database Systems, Vol.33, No.3, pp.1- 

46, 2008.

[13] O. Frieder and C. Baru, “Site and Query Scheduling Policies 

in Multicomputer Database Systems,” IEEE Transactions on 

Knowledge and Data Engineering, Vol.6, No.4, pp.609-619, 

Aug., 1994.

[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization, 

and Machine Learning, Addison-Wesley Publishing, 1989.

[15] N. Gorla, “An Object-Oriented Database Design for Improved 

Performance,” Data and Knowledge Engineering, Vol.37, pp. 

117-138, 2001.

[16] G. Graefe, “Query Evaluation Techniques for Large Databases,” 

ACM Computing Surveys, Vol.25, pp.73-90, June, 1993.

[17] X. Gu, W. Lin and V. Bharadwaj, “Practically Realizable 

Efficient Data Allocation and Replication Strategies for 

Distributed Databases with Buffer Constraints,” IEEE 

Transactions on Parallel & Distributed Systems, Vol.17, No.9, 

pp.1001-1013, Sep., 2006.

[18] J. M. Johansson, S. T. March and J. D. Naumann, “Modeling 

Network Latency and Parallel Processing in Distributed 

Database Design,” Decision Sciences, Vol.34, No.4, pp.677- 

706, 2003.



306  정보처리학회논문지 D 제16-D권 제3호(2009.6)

[19] D. Kossmann, “The State of the Art in Distributed Query 

Processing,” ACM Computing Surveys, Vol.32, No.4, pp.422- 

469, Dec., 2000.

[20] U R. Kulkarni and H. K. Jain, “Interaction Between Concur-

rent Transactions in the Design of Distributed Databases,” 

Decision Sciences, Vol.24, No.2, pp.253-277, 1993.

[21] A. Kumar, and R. Pathak, “Genetic Algorithm Based Approach 

for File Allocation on Distributed Systems,” Computers & 

Operations Research, Vol.22, No.1, pp.41-55, 1995.

[22] B. Li and W. Jiang, “A novel stochastic optimization algori-

thm,” IEEE Trans. on Systems, Man, and Cybernetics, Part 

B, Vol.30, No.1, 2000.

[23] S-J. Lim and Y-K Ng, “Vertical Fragmentation and Alloca-

tion in Distributed Deductive Database Systems,” Information 

Systems, Vol.22, No.1, pp.1-24, 1997.

[24] S.T. March and S. Rho, “Allocating Data and Operations to 

Nodes in Distributed Database Design,” IEEE Trans. on 

Knowledge and Data Engineering, Vol.7, No.2, April, 1995.

[25] T. Martin, K. Lam and J. Russel, “An Evaluation of Site 

Selection Algorithms for Distributed Query Processing,” The 

Computer Journal, Vol.33, No.1, pp.61-70, 1990.

[26] Z. Michalewicz and D. Fogel, How to Solve It: Modern 

Heuristics, 2
nd
 edition, Springer, Berlin, 2004.

[27] M. Ozsu and P. Valduriez, Principles of Distributed Database 

Systems, Englewood Cliffs, Prentice-Hall Inc., 1991.

[28] S. Seshadri and B. Cooper, “Routing Queries through a 

Peer-to-Peer InfoBeacons Network Using Information Retrieval 

Techniques,” IEEE Transactions on Parallel & Distributed 

Systems, Vol.18, No.12, pp.1754-1765, Dec., 2007.

[29] S.K. Song and N. Gorla, “A Genetic Algorithm for Vertical 

Fragmentation and Access Path Selection,” The Computer 

Journal, Vol.43, No.1, pp.81-93, 2000.

[30] J. D. Schaffer, R. A. Caruana, L. J. Eshlman and R. Das, “A 

Study of Control Parameters Affecting Online Performance 

of Genetic Algorithms for Function Optimization, In J. D. 

Schaffer, (ed.), Proceedings of the Third International Confe-

rence on Genetic Algorithms, pp.51-60, 1989.

[31] J. Srivastava and G. Elsesser, “Optimizing Multi-Join Queries 

in Parallel Relational Databases,” Proceedings of the 2
nd
 

International Conference on Parallel and Distributed Infor-

mation Systems, pp.84-92, 1993.

[32] M. Syam, “Allocating Fragments in Distributed Databases,” 

IEEE Transactions on Parallel & Distributed Systems, Vol. 

16, No.7, pp.577-585, Jul., 2005.

[33] A.M. Tamhankar and S. Ram, “Database Fragmentation and 

Allocation: An Integrated Methodology and Case Study,” 

IEEE Trans. on Systems, Man, and Cybernetics, Vol.28, No.3, 

pp.288-305, May, 1998.

[34] L. The, “Distributing Data Without Choking the Net,” Data-

mation, Vol.40, pp.35-36, Jan. 7, 1994.

[35] C. T. Yu, C. Chang, M. Templeton, D. Brin and E. Lund, 

“Query Processing in a Fragmented Relational Distributed 

System: Mermaid,” IEEE Transactions on Software Engi-

neering, Vol.11, pp.795-809. Aug., 1985.

[36] M. Ziane, M. Zait and P. Borla-Salamet, “Parallel Query 

Processing in DBS 3,” Proceedings of the 2
nd
 International 

Conference on Parallel and Distributed Information Systems, 

pp.93-102. 1993.

송 석 규

e-mail : sksong@ysu.ac.kr

1977년 성균관대학교 화학공학과(학사)

1990년 미국 Arizona State Univ. MIS 

(석사)

1997년 미국 Cleveland State Univ. MIS 

(박사)

1995년～1997년 ㈜포스데이타(POSDATA) 차장

1997년～현  재 영산대학교 호텔경영학과 교수

관심분야 :데이터베이스, 소프트웨어공학, 유전자알고리즘, IT경

영전략컨설팅, 호텔정보시스템



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /!BM-dolhdip1
    /!BM-gaulr
    /!BM-joyakr
    /AgencyFB-Bold
    /AgencyFB-Reg
    /AharoniBold
    /ahn2006-B
    /ahn2006-L
    /ahn2006-M
    /Albertus-ExtraBold
    /Albertus-Medium
    /AlbertusMT
    /AlbertusMT-Italic
    /AlbertusMT-Light
    /Algerian
    /AmericanGaramondBT-Roman
    /AmiR-HM
    /ArborisFolium
    /ArborWin
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /Astro2KT
    /AvantGarde-Book
    /AvantGarde-BookOblique
    /AvantGarde-Demi
    /AvantGarde-DemiOblique
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /AvantGardeITCbyBT-Medium
    /AvantGardeITCbyBT-MediumOblique
    /AvQest
    /BaskOldFace
    /Batang
    /BatangChe
    /BatangOldHangulJamo
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BlackChancery
    /BM-dolchulip1
    /BM-gaulr
    /BM-joyakr
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /Bookman-Demi
    /Bookman-DemiItalic
    /Bookman-Light
    /Bookman-LightItalic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrowalliaNew
    /BrowalliaNew-Bold
    /Brush445BT-Regular
    /BrushScript
    /BrushScriptBT-Regular
    /BrushScriptMT
    /ByJOSSQ-DMFinBeiJing
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /Clarendon
    /Clarendon-Bold
    /Clarendon-Condensed-Bold
    /Clarendon-Light
    /CliperSKana
    /Cmsy10
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolekana
    /CooperBlack
    /CooperBlack-Italic
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Copperplate-ThirtyThreeBC
    /Copperplate-ThirtyTwoBC
    /CordiaNew
    /CordiaNew-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /Crayon
    /CurlzMT
    /DanzinRegular
    /DFKMincho-Bd-WIN-KSC-H
    /Dinbla
    /Dinbol
    /DinerRegular
    /DingDongBold
    /Dinlig
    /Dinmed
    /Dinreg
    /Dotum
    /DotumChe
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /Eurostile
    /Eurostile-Bold
    /Eurostile-BoldExtendedTwo
    /Eurostile-ExtendedTwo
    /ExpoL-HM
    /ExpoM-HM
    /FelixTitlingMT
    /FencesPlain
    /Flora-Bold
    /Flora-BoldEx
    /Flora-BoldHo
    /Flora-BoldWd
    /Floralies
    /Flora-Normal
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FrankRuehl
    /FreestyleScript-Regular
    /FrenchScriptMT
    /FZBSJW--GB1-0
    /FZCCHFW--GB1-0
    /FZCCHJW--GB1-0
    /FZCQFW--GB1-0
    /FZCQJW--GB1-0
    /FZCSFW--GB1-0
    /FZCSJW--GB1-0
    /FZCYFW--GB1-0
    /FZDBSFW--GB1-0
    /FZDBSJW--GB1-0
    /FZDHTJW--GB1-0
    /FZFSFW--GB1-0
    /FZFSJW--GB1-0
    /FZH4FW--GB1-0
    /FZHLFW--GB1-0
    /FZHLJW--GB1-0
    /FZHPFW--GB1-0
    /FZHPJW--GB1-0
    /FZHTFW--GB1-0
    /FZHTJW--GB1-0
    /FZKANGFW--GB1-0
    /FZKTFW--GB1-0
    /FZKTJW--GB1-0
    /FZL2FW--GB1-0
    /FZL2JW--GB1-0
    /FZLBFW--GB1-0
    /FZLBJW--GB1-0
    /FZLSJW--GB1-0
    /FZMHJW--GB1-0
    /FZNBSJW--GB1-0
    /FZNSTFW--GB1-0
    /FZPHFW--GB1-0
    /FZPHTFW--GB1-0
    /FZPHTJW--GB1-0
    /FZPWFW--GB1-0
    /FZPWJW--GB1-0
    /FZS3JW--GB1-0
    /FZSEFW--GB1-0
    /FZSEJW--GB1-0
    /FZSHJW--GB1-0
    /FZSJSFW--GB1-0
    /FZSJSJW--GB1-0
    /FZSSFW--GB1-0
    /FZSSJW--GB1-0
    /FZSTFW--GB1-0
    /FZSYFW--GB1-0
    /FZSYJW--GB1-0
    /FZSY--SURROGATE-0
    /FZSZFW--GB1-0
    /FZXBSFW--GB1-0
    /FZXBSJW--GB1-0
    /FZXDXJW--GB1-0
    /FZXH1FW--GB1-0
    /FZXH1JW--GB1-0
    /FZXKFW--GB1-0
    /FZXLFW--GB1-0
    /FZXQFW--GB1-0
    /FZXQJW--GB1-0
    /FZXSHFW--GB1-0
    /FZXSHJW--GB1-0
    /FZXSSFW--GB1-0
    /FZXXLFW--GB1-0
    /FZY1FW--GB1-0
    /FZY3FW--GB1-0
    /FZY3JW--GB1-0
    /FZY4FW--GB1-0
    /FZYTFW--GB1-0
    /FZYTJW--GB1-0
    /FZYXFW--GB1-0
    /FZZDXFW--GB1-0
    /FZZDXJW--GB1-0
    /FZZHYFW--GB1-0
    /FZZHYJW--GB1-0
    /FZZKFW--GB1-0
    /FZZQFW--GB1-0
    /FZZQJW--GB1-0
    /FZZYFW--GB1-0
    /FZZYJW--GB1-0
    /Gaeul
    /GaramB-HM
    /Garamond
    /Garamond-Antiqua
    /Garamond-Bold
    /Garamond-Halbfett
    /Garamond-Italic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /GaramondNo4CyrTCY-Medi
    /GauFontShirousagi
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSans
    /GillSans-Bold
    /GillSans-BoldCondensed
    /GillSans-BoldItalic
    /GillSans-Condensed
    /GillSans-ExtraBold
    /GillSans-Italic
    /GillSans-Light
    /GillSans-LightItalic
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /GothicL-HM
    /GothicRoundB-HM
    /Goudy
    /Goudy-Bold
    /Goudy-BoldItalic
    /Goudy-ExtraBold
    /Goudy-Italic
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /GraphicSansR-HM
    /GTB
    /GTM
    /Gulim
    /GulimChe
    /GulimOldHangulJamo
    /Gungsuh
    /GungsuhChe
    /H2bulL
    /H2gprM
    /H2gsrB
    /H2gtrB
    /H2gtrE
    /H2gtrM
    /H2hdrM
    /H2hsrM
    /H2mjmM
    /H2mjrB
    /H2mjrE
    /H2mjsM
    /H2mjuM
    /H2mkpB
    /H2mkrB
    /H2pirL
    /H2porL
    /H2porM
    /H2sa1B
    /H2sa1M
    /H2sa2L
    /H2snrB
    /H2ta1L
    /H2ta2M
    /H2wulE
    /H2wulL
    /H2yerM
    /H2ysrM
    /HaansoftBatang
    /HaansoftDotum
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HeadG
    /HeadlineR-HM
    /HeadlineSansR-HM
    /HeadR
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Condensed
    /Helvetica-Condensed-Bold
    /Helvetica-Condensed-BoldObl
    /Helvetica-Condensed-Oblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HGMinchoB
    /HGPMinchoB
    /HGSMinchoB
    /HighTowerText-Italic
    /HighTowerText-Reg
    /HMKBP
    /HMKBS
    /HoeflerText-Black
    /HoeflerText-BlackItalic
    /HoeflerText-Italic
    /HoeflerText-Ornaments
    /HoeflerText-Regular
    /HYbdaL
    /HYbdaM
    /HYbsrB
    /HYBuDle-Medium
    /HYcysM
    /HYdnkB
    /HYdnkM
    /HYGoThic-Light
    /HYgprM
    /HYGraPhic-Bold
    /HYgsrB
    /HYgtrE
    /HYhaeseo
    /HYHeadLine-Bold
    /HyhwpEQ
    /HYkanB
    /HYkanM
    /HYKHeadLine-Bold
    /HYKHeadLine-Medium
    /HYLongSamul-Bold
    /HYLongSamul-Medium
    /HYmjrE
    /HYMokPan-Bold
    /HYmprL
    /HYMyeongJo-Light
    /HYMyeongJo-Medium
    /HYMyeongJo-Ultra
    /HYnamB
    /HYnamL
    /HYnamM
    /HYPMokPan-Bold
    /HYPMokPan-Light
    /HYPop-Medium
    /HYporM
    /HYPost-Bold
    /HYRGoThic-Bold
    /HYRGoThic-Medium
    /HYsanB
    /HYShortSamul-Light
    /HYSinGraPhic-Medium
    /HYSinMyeongJo-Bold
    /HYsnrL
    /HYsupB
    /HYsupM
    /HYSymbolD
    /HYSymbolE
    /HYSymbolF
    /HYSymbolG
    /HYSymbolH
    /HYTaJa-Bold
    /HYTaJaFull-Bold
    /HYTaJaFull-Light
    /HYTaJa-Medium
    /HYtbrB
    /HYwulB
    /HYwulM
    /HYYeasoL-Bold
    /HYYeatGul-Bold
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /IrisUPC
    /IrisUPCBold
    /JasmineUPC
    /JasmineUPC-Bold
    /Jokerman-Regular
    /JuiceITC-Regular
    /KangSan
    /Kartika
    /Keroppi
    /KirillicaWincyr
    /KoreanGD-Bold-KSCpc-EUC-H
    /KoreanGD-Extra-KSCpc-EUC-H
    /KoreanGD-Medium-KSCpc-EUC-H
    /KoreanMJ-Bold-KSCpc-EUC-H
    /KoreanMJ-Medium-KSCpc-EUC-H
    /KristenITC-Regular
    /KunstlerScript
    /KyunKo
    /KyunMyung
    /Latha
    /LatinWide
    /LCDReg
    /LetterGothic
    /LetterGothic-Bold
    /LetterGothic-BoldOblique
    /Love
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Lydian
    /MagicR-HM
    /Magneto-Bold
    /MaiandraGD-Regular
    /MalgunGothicBold
    /MalgunGothicRegular
    /Mangal-Regular
    /Marigold
    /MaturaMTScriptCapitals
    /MDAlong
    /MDArt
    /MDEasop
    /Mdesb
    /MDGaesung
    /MDSol
    /Mfoxb
    /Mfoxl
    /Mfoxm
    /MicrosoftSansSerif
    /MingLiU
    /Miriam
    /MiriamFixed
    /MiriamTransparent
    /Mistral
    /MJB
    /MJL
    /MJM
    /MMchonL
    /MMchonM
    /Modern-Regular
    /MoeumTR-HM
    /Monaco
    /MonaLisa-Recut
    /MonotypeCorsiva
    /MonotypeSorts
    /Mpaperb
    /Mpaperl
    /Mpaperm
    /Msam10
    /MS-Gothic
    /MS-Mincho
    /MSOutlook
    /MS-PGothic
    /MS-PMincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MSSong
    /MS-UIGothic
    /MT-Extra
    /MT-Symbol
    /Munhem
    /MVBoli
    /MyungjoL-HM
    /MyungjoXB-HM
    /NamuB-HM
    /NamuR-HM
    /Narkisim
    /Nekoyanagi
    /NemoB
    /NemoL
    /NemoM
    /NemoXB
    /NewCenturySchlbk-Bold
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /NewGulim
    /NewsGothic
    /NewsGothic-Bold
    /NewsGothic-Condensed
    /NewsGothic-Italic
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NSimSun
    /OCRAbyBT-Regular
    /OCRAExtended
    /OCRB10PitchBT-Regular
    /OldEnglishTextMT
    /Onyx
    /OriginalGaramondBT-Roman
    /Oxford
    /Pado
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /PhotinaCasualBlack
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Pristina-Regular
    /PyunjiR-HM
    /QDotum
    /QGulim
    /QGungsuh
    /Raavi
    /RageItalic
    /Ravie
    /Retort
    /RetortOutline
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /SaenaegiR-HM
    /SaenaegiXB-HM
    /SAKURAhira
    /San02B
    /San02L
    /San02M
    /San60B
    /San60L
    /San60M
    /San60R
    /San60SB
    /SanBiB
    /SanBiL
    /SanBiM
    /SanBkM
    /SanBoB
    /SanBoL
    /SanBoM
    /SanBsB
    /SanBsL
    /SanBsU
    /SanCrB
    /SanCrK
    /SanCrL
    /SandArB
    /SandArL
    /SandArM
    /SandArXB
    /SandAtM
    /SandAtXB
    /SandJg
    /SandKg
    /SandKm
    /SandMtB
    /SandMtL
    /SandMtM
    /SandSaB
    /SandSaL
    /SandSaM
    /SandSm
    /SandTg
    /SandTm
    /SanHgB
    /SanHgL
    /SanHgM
    /SanIgM
    /SanKbB
    /SanKbL
    /SanKbM
    /SanKsB
    /SanKsL
    /SanKsM
    /SanMogfilB
    /SanMogfilL
    /SanMogfilM
    /SanMrB
    /SanMrJ
    /SanMrM
    /SanNsB
    /SanNsL
    /SanNsM
    /SanPkB
    /SanPkL
    /SanPkM
    /SanPuB
    /SanPuW
    /SanSrB
    /SanSrL
    /SanSrM
    /SanSwB
    /SanSwL
    /SanSwM
    /Schrift
    /ScriptMTBold
    /SegoeMediaCenter-Regular
    /SegoeMediaCenter-Semibold
    /SeoulGlow
    /SeoulHangangL
    /SeoulHangangM
    /SeoulNamsanB
    /SeoulNamsanEB
    /SeoulNamsanL
    /SeoulNamsanM
    /SeoulNamsanvert
    /SeUtum
    /SgreekMedium
    /Shadow9
    /SHeadG
    /SHeadR
    /ShowcardGothic-Reg
    /Shruti
    /Shusha
    /Shusha02
    /Shusha05
    /SILDoulosIPA
    /SILDoulosIPA93Bold
    /SILDoulosIPA93BoldItalic
    /SILDoulosIPA93Italic
    /SILDoulosIPA93Regular
    /SILManuscriptIPA
    /SILManuscriptIPA93Bold
    /SILManuscriptIPA93BoldItalic
    /SILManuscriptIPA93Italic
    /SILManuscriptIPA93Regular
    /SILSophiaIPA
    /SILSophiaIPA93Bold
    /SILSophiaIPA93BoldItalic
    /SILSophiaIPA93Italic
    /SILSophiaIPA93Regular
    /SimHei
    /SimSun
    /SinGraphic
    /SinMun
    /SnapITC-Regular
    /SohaR-HM
    /Sol
    /SPgoJ1-KSCpc-EUC-H
    /SPgoJ-KSCpc-EUC-H
    /SPgoJS-KSCpc-EUC-H
    /SPgoSE-KSCpc-EUC-H
    /SPgoT-KSCpc-EUC-H
    /SPmuJ-KSCpc-EUC-H
    /SPmuS1-KSCpc-EUC-H
    /SPmuS-KSCpc-EUC-H
    /StempelGaramond-Bold
    /StempelGaramond-BoldItalic
    /StempelGaramond-Italic
    /StempelGaramond-Roman
    /Stencil
    /Sylfaen
    /Symbol
    /SymbolMT
    /TaeKo
    /TaeM
    /TaeUtum
    /Taffy
    /Tahoma
    /Tahoma-Bold
    /TahomaSmallCap-Bold
    /TempusSansITC
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldTh
    /TimesIPAnew
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Tiplo
    /ToodamB
    /ToodamL
    /ToodamM
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /TSTNamr
    /TSTPenC
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /TypewriteB
    /TypewriteL
    /TypewriteM
    /Univers
    /Univers-BlackExt
    /Univers-Black-Normal
    /Univers-BoldExt
    /Univers-Condensed
    /UniversCondensedLight
    /UniversCondensedOblique
    /Univers-Light-Italic
    /Univers-Light-Light
    /Univers-Light-LightTh
    /Univers-Light-Normal
    /Univers-Medium
    /Univers-Oblique
    /Uri
    /Utum
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /Westminster
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /WoorinR-HM
    /WP-CyrillicA
    /WP-GreekCentury
    /WP-MultinationalARoman
    /YDIBirdB
    /YDIBirdL
    /YDIBirdM
    /YDIBlueB
    /YDIBlueEB
    /YDIBlueL
    /YDIBlueM
    /YDIChungM
    /YDICMjoL
    /YDICMjoM
    /YDICstreB
    /YDICstreL
    /YDICstreM
    /YDICstreUL
    /YDIFadeB
    /YDIFadeL
    /YDIFadeM
    /YDIGasiIIB
    /YDIGasiIIL
    /YDIGasiIIM
    /YDIGirlB
    /YDIGirlL
    /YDIGirlM
    /YDIGukB
    /YDIGukL
    /YDIGukM
    /YDIGurmL
    /YDIHSalM
    /YDIHsangIIB
    /YDIHsangIIL
    /YDIHsangIIM
    /YDIMokB
    /YDIMokL
    /YDIPinoB
    /YDIPinoL
    /YDIPinoM
    /YDIPu
    /YDISapphIIB-KSCpc-EUC-H
    /YDISmileB
    /YDISmileL
    /YDISmileM
    /YDISprIIB
    /YDISprIIL
    /YDISprIIM
    /YDISumB
    /YDISumL
    /YDISumM
    /YDIWebBatan
    /YDIWebDotum
    /YDIWriSin
    /YDIYGO310
    /YDIYGO330
    /YDIYGO340
    /YDIYGO350
    /YDIYGO360
    /YDIYMjO220
    /YDIYMjO230
    /YDIYMjO310
    /YDIYMjO330
    /YDIYMjO340
    /YDIYMjO350
    /YDIYMjO360
    /YDIYSin
    /YetR-HM
    /YGO115
    /YGO125
    /YGO135
    /YGO145
    /YGO155
    /YGO165
    /YGO520
    /YGO530
    /YGO540
    /YGO550
    /YjBACDOOBold
    /YJBELLAMedium
    /YJBLOCKMedium
    /YJBONMOKGAKMedium
    /YjBUTGOTLight
    /YjCHMSOOTBold
    /YjDOOLGIMedium
    /YjDWMMOOGJOMedium
    /YjGABIBold
    /YjGOTGAEMedium
    /YjINITIALPOSITIVEMedium
    /YJINJANGMedium
    /YjMAEHWASemiBold
    /YjNANCHOMedium
    /YjSHANALLMedium
    /YjSOSELSemiBold
    /YjTEUNTEUNBold
    /YjWADAGMedium
    /YMjO115
    /YMjO125
    /YMjO135
    /YMjO145
    /YMjO155
    /YMjO165
    /YMjO45
    /YMjO520
    /YMjO530
    /YMjO540
    /YMjO550
    /YonseiB
    /YonseiL
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 1200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


