Array redistribution is usually required to enhance algorithm performance in many parallel programs on distributed memory multicomputers. GEN_BLOCK redistribution, which is redistribution between different GEN_BLOCKs, is essential for load balancing. However, prior research on redistribution has been focused on regular redistribution, such as redistribution between different CYCLIC(N)s. GEN_BLOCK redistribution is very different from regular redistribution. Message passing in regular redistribution involves repetitions of basic message passing patterns, while message passing for GEN_BLOCK redistribution shows locality. This paper proves that two optimal condition, reducing the number of communication steps and minimizing redistribution size, are essential in GEN_BLOCK redistribution. Additionally, by adding a relocation phase to list scheduling, we make an optimal scheduling algorithm for GEN_BLOCK redistribution. To evaluate the performance of the algorithm, we have performed experiments on a CRAY T3E. According to the experiments, it was proven that the scheduling algorithm shows better performance and that the conditions are critical in enhancing the communication speed of GEN_BLOCK redistribution.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.42
no.5
/
pp.361-367
/
2014
In this paper, task scheduling and load balancing methods of multifrontal solution methods of finite element structural analysis in a modern multicore machine are introduced. Many structural analysis problems have generally irregular grid and many kinds of properties and materials. These irregularities and heterogeneities lead to bottleneck of parallelization and cause idle time to analysis. Therefore, task scheduling and load balancing are desired to reduce inefficiency. Several kinds of multithreaded parallelization methods are presented and comparison between static and dynamic task scheduling are shown. To reduce the idle time caused by irregular partitioned subdomains, computational load balancing methods, Balancing all tasks and minmax task pairing balancing, are invented. Theoretical and actual elapsed time are shown and the reason of their performance gap are discussed.
Kim, So-Hee;Heo, Sang-Wn;Rho, Dae-Seok;Seo, In-Yong
Proceedings of the KIEE Conference
/
2011.07a
/
pp.673-674
/
2011
정부의 녹색성장 정책에 의해 배전계통에 태양광, 풍력발전 등 분산전원의 설치가 급증함에 따라 기존의 배전계통의 조류의 방향 및 고장전류, 부하전류가 변화되어 배전계통의 보호협조 운용상에 여러 가지 문제점들이 발생할 가능성이 커지고 있다. 특히 분산전원연계시 임피던스 병렬화로 보호기기에 흐르는 사고전류가 감소하는 분류효과가 발생할 가능성이 있다. 따라서 본 논문에서는 분산전원이 연계된 경우 보호협조를 검토하기 위한 양방향 보호협조 평가프로그램을 이용하여 분산전원이 연계된 경우 계통에서 발생할 수 있는 문제점 중 분류 효과로 인한 보호기기의 부동작 사례를 시뮬레이션하고, 그 결과를 분석하여 본 프로그램의 유용성을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2016.04a
/
pp.55-58
/
2016
스카이라인 질의란 다수의 선택지 중 '선호될 만한(preferable)' 선택지를 요청하는 질의이다. 사용자가 검토해야하는 선택지의 수를 대폭 감소시키는 스카이라인 질의는 데이터가 폭증하는 빅데이터 환경에서 매우 유용하게 활용된다. 이러한 배경에서 대용량 데이터에 대한 스카이라인 질의를 분산 병렬 처리하는 기법이 각광을 받고 있으며, 특히 맵리듀스(MapReduce) 기반의 분산 병렬 처리 기법 연구가 활발히 진행 중이다. 맵리듀스 기반 알고리즘의 병렬성 제고를 위해서는 부하 불균등 문제 중복 계산 문제 과다한 네트워크 비용 발생 문제를 해소해야 한다. 최근 각 기반 공간분할 기법을 사용하여 부하 불균등 문제와 중복 계산 문제를 해소하는 맵리듀스 기반 스카이라인 질의 처리 기법이 제안되었으나 해당 기법은 네트워크 비용 관점에서 최적화되어있지 않다. 본 논문에서는 부하 불균등 문제와 중복 계산 문제를 해소하면서도 프루닝을 통해 네트워크 비용 절감 시킬 수 있는 새로운 맵리듀스 기반 병렬 스카이라인 질의 처리 기법인 MR-SEAP(MapReduce sample Skyline object Equality Angular Partitioning)을 제안한다. MR-SEAP에서는 데이터를 샘플링하여 샘플 스카이라인 객체를 추출한 뒤 해당 객체들을 균등 분배하는 각도를 기준으로 공간을 분할하여 스카이라인 질의를 병렬 계산하되, 샘플 스카이라인을 이용하여 다수의 객체를 사전에 프루닝함으로써 네트워크 비용을 절감한다. 본 논문에서는 다양한 데이터 수량(cardinality) 및 분포(distribution)에 따른 제안 기법의 성능을 실험 평가함으로써 제안 기법의 우수성을 검증한다.
고신뢰도의 요구를 보장하는 병렬 구조의 분산시스템의 사용이 증가함에 따라 네트워크 상에서 메시지전달을 방해하는 요소고장의 영향을 최소화시킬 수 있는 고장포용 라우팅에 대한 중요성이 부각되고 있다. 그러나, 네트워크의 복잡한 환경 때문에 요소고장을 극복하기 위한 고장포용 라우팅 알고리즘의 설계는 쉬운 일이 아니다. 본 논문에서는 2차원 메쉬 네트워크에 적용되는 최적의 고장포용 라우팅 알고리즘을 설계하기 위하여 관련 응용분야에서 그 유용성이 검증된 유전 알고리즘을 이용한다. 제안된 알고리즘은 wormhole 라우팅 방식을 사용하며, 교착상태를 없애기 위하여 하나의 물리적 채널을 공유하는 4개의 가상채널을 사용한다. 마지막으로, 시뮬레이션을 통하여 제안된 알고리즘이 기존의 다른 고장포용 라우팅 알고리즘보다 우수함을 증명한다.
The World Wide Web has become the largest virtual system that is almost universal in scope. In recent research, it has become effective to utilize idle hosts existing in the World Wide Web for running applications that require a substantial amount of computation. This novel computing paradigm has been referred to as the advent of global computing. In this paper, we implement and propose a mobile object-based global computing framework called Tiger, whose primary goal is to present novel object-oriented programming libraries that support distribution, dispatching, migration of objects and concurrency among computational activities. The programming libraries provide programmers with access, location and migration transparency for distributed and mobile objects. Tiger's second goal is to provide a system supporting requisites for a global computing environment - scalability, resource and location management. The Tiger system and the programming libraries provided allow a programmer to easily develop an objectoriented parallel and distributed application using globally extended computing resources. We also present the improvement in performance gained by conducting the experiment with highly intensive computations such as parallel fractal image processing and genetic-neuro-fuzzy algorithms.
Sequential pattern mining that determines frequent patterns appearing in a given set of sequences is an important data mining problem with broad applications. For example, sequential pattern mining can find the web access patterns, customer's purchase patterns and DNA sequences related with specific disease. In this paper, we develop the sequential pattern mining algorithms using MapReduce framework. Our algorithms distribute input data to several machines and find frequent sequential patterns in parallel. With synthetic data sets, we did a comprehensive performance study with varying various parameters. Our experimental results show that linear speed up can be achieved through our algorithms with increasing the number of used machines.
Journal of the Institute of Electronics and Information Engineers
/
v.49
no.9
/
pp.196-204
/
2012
Recently, many applications perform OLAP(On-Line Analytical Processing) over a very large volume of data. Multidimensional data cube is regarded as a core tool in OLAP analysis. This paper focuses on the method how to efficiently compute data cubes in parallel by using a popular parallel processing tool, MapReduce. We investigate efficient ways to implement PipeSort algorithm, a well-known data cube computation method, on the MapReduce framework. The PipeSort executes several (descendant) cuboids at the same time as a pipeline by scanning one (ancestor) cuboid once, which have the same sorting order. This paper proposed four ways implementing the pipeline of the PipeSort on the MapReduce framework which runs across 20 servers. Our experiments show that PipeMap-NoReduce algorithm outperforms the rest algorithms for high-dimensional data. On the contrary, Post-Pipe stands out above the others for low-dimensional data.
The proof-of-work consensus algorithm used by most blockchains is causing a massive waste of computing resources in the form of mining. A useful proof-of-work consensus algorithm has been studied to reduce the waste of computing resources in proof-of-work, but there are still resource waste and mining centralization problems when creating blocks. In this paper, the problem of resource waste in block generation was solved by replacing the relatively inefficient computation process for block generation with distributed artificial intelligence model learning. In addition, by providing fair rewards to nodes participating in the learning process, nodes with weak computing power were motivated to participate, and performance similar to the existing centralized AI learning method was maintained. To show the validity of the proposed methodology, we implemented a blockchain network capable of distributed AI learning and experimented with reward distribution through resource verification, and compared the results of the existing centralized learning method and the blockchain distributed AI learning method. In addition, as a future study, the thesis was concluded by suggesting problems and development directions that may occur when expanding the blockchain main network and artificial intelligence model.
Kim, Ki Ryong;Oh, Chang-Yeol;Kwon, Min-Ho;Kim, Tae-Jin;Lee, Jong-Pil
Proceedings of the KIPE Conference
/
2019.07a
/
pp.370-371
/
2019
태양광 및 풍력과 같은 신 재생에너지원을 바탕으로 하는 분산 발전이 증가함에 따라 대용량의 PCS가 요구된다. 대용량의 PCS를 제어하기 위해서는 병렬운전이 바탕이 되어야 한다. 본 논문에서는 통신 없이 제어가 가능한 기존의 드룹 제어의 장점을 살리면서 전력 편차가 적은 마스터 슬레이브 제어의 장점을 결합한 병렬운전 제어 방식을 제안하고 시뮬레이션을 통해 제어 알고리즘의 타당성을 검증하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.