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Abstract The World Wide Web has become the largest virtual system that is almost
universal in scope. In recent research, it has become effective to utilize idle hosts existing in the
World Wide Web for running applications that require a substantial amount of computation. This
novel computing paradigm has been referred to as the advent of global computing. In this paper,
we implement and propose a mobile objéct-based global computing framework called Tiger, whose
primary goal is to present novel object-oriented programming libraries that support distribution,
dispatching, migration of objects and concurrency among computational activities. The program-
ming libraries provide programmers with access, location and migration transparency for
distributed and mobile objects. Tiger's second goal is to provide a system supporting requisites for
a global computing environment - scalability, resource and location management. The Tiger
system and the programming libraries provided allow a programmer to easily develop an object-
oriented parallel and distributed application using globally extended computing resources. We ‘also
present the improvement in performance gained by conducting the experiment with highly inten-
sive computations such as parallel fractal image processing and genetic—neuro-fuzzy algorithms.
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1. Introduction

Utilization of resources available to a network of
workstations has served well to gain enough
computing resources in order to execute a compu-—
tationally intensive application [1, 2, 3]. However, a
significant administration is required for them, so

that administrators have to manually download
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codes, install and configure the system. This

restricts the size of the participating hosting group
and the benefit of parallel and distributed compu-
tations.

the World Wide Web

referred to as the Web) has become the largest

Recently, (hereinafter
virtual system that is almost universal in scope.
There
Internet era, which have resulted in the proliferation
of
high-speed links. At any given moment, however,

have been substantial changes in this

low-priced powerful hosts connected by
many hosts are idle. An appealing idea is to utilize

these hosts to run applications that require a

substantial amount of computation. Such a novel
computing paradigm has ]3¢611 called Global Com-
puting.

Some of the obstacles common to global comput-
ing include the heterogeneity of the participating
difficulties distributed

applications, and security concerns of users. The

hosts, in  administering
Java language and Java applets have successfully
addressed some of these problems, since the Java
genuinely supports
The

number of Java-capable browsers is able to load

executing environment

platform-independent  portability. growing

applets remotely so that administrative difficulties

<

are reduced. The browsers execute applets without

valid security certificates in a trusted environment,

which alleviates some of the users’ security

concerns. Furthermore, Java is a simple, robust,
multithreaded language and is designed to support
distributed applications. Therefore, Java and Java
applets with Java-capable Web browsers
become good candidates for the construction of a
global computing platform [4, 5].

The object-oriented paradigm is ideal for parallel
and distributed computations, because users can
naturally treat objects as the distributing and
dispatching units that are executed concurrently.
Objects of

communicating express

become a set
that

computation. With current state-of-the-art techno-

can autonomous

entities intensive

logy, however, developing parallel and distributed

applications using globally extended computing

have

Al
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resources requires special knowledge beyond that
needed to develop an application to run on a single
host. Our first challenge is to provide the global
parallel and distributed programming libraries that
can combine distribution, dispatching, migration of
objects  and computational

concurrency among

activities into existing sequential programs. Global

parallel and distributed programming can be
simplified by combining the libraries into the
classical Ja‘nva language. The libraries provide
programmers with a globally extended virtual
address space, and allow them to write the
programs in a shared-memory style.

Since numerous Thosts that contribute CPU

resources participate in a global environment, the

global infrastructure employed must allow the

systems growth without the wuser’'s awareness.
Furthermore, the hosts manifest different perfor-
mances and memory capacity, which may change
variously in the duration of the long execution
time. Therefore, it is necessary to move numerous
objects among the globally extended computing
resources provided in order to efficiently execute a
parallel and distributed application with optimal use
of resources. Because of such a migration, it is
important to achieve transparency through a proper
location management scheme. Our second challenge
is to deal with three requisites for object-oriented
global systems - scalability, global resource
management, and location management for mobile
objegts.

This paper is organized as follows: Section 2
discusses related works. A description ‘of our
system and object model is given in Section 3.
This is followed by a detailed discussion about
parallel and distributed programming using global
resources in Section 4. Functional requisites such
as resource and location management are presented
5.

presented in Section 6, and conclusions are pre—

in  Section Experimental results are then

sented in Section 7.

2. Related Works

Several approaches have been proposed recently
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to provide a Java-based distributed and global
computing framework. In this section, we discuss
some of their characteristics and functional defici—
encies.

ATLAS[6] is the earliest infrastructure support—
ing global computing using Java. It ensures
scalability using a hierarchy of managers. However,
it may raise some problems regarding portahility,
since its implementation uses native libraries.
ParaWeb[7]

Internet resources for parallel computing. It allows

provides a [ramework for utilizing
a Java program using Java threads to be executed

in parallel on a shared-memory environment

consisting of several hosts on the Internet.
However, its runtime system is implemented by
modifying the Java interpreter, while its new class
libraries provide a message-passing framework for
sending and receiving messages to and from
threads spawned on remote machines. ATLAS and
ParaWeb, therefore, may be more suitable to a
LAN environment.
SuperWeb[8]

globél computing with emphasis on ease of‘CPU

provides an infrastrﬁcture for
donors’ participation. It discusses various technical
challengeé, such as interoperability, executioh speed,
security, correctness and communication, associated
with a global computing environment. However, it
does not supply a programming model for a parallel
and distributed application.

Also, POPCORNI[9] provides any programmer
connected to the Wéb with one huge virtual
machine. It is noted that a nharkeﬁfaased
mechanism of trade in CPU time is prdvided, It
supports a special programming paradigm such that
it eliminates any need for explicit use of any other
tybes of concurrency and event-driven model.
However, the paradigm requires programmers to
learn new programming skills, because there are
many gaps between classical object-oriented
programming and POPCORN programming.

DJM[10]

computing with

provides a novel model of global

introducing applet helper
mechanism, which allows applets to communicate

with any host and act as servers in the system

[e]
8
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o

2]

o
[

53 EEEE 957
without lowering the security level of the Java
applet technology. Its programming paradigm is like
that of CORBA and JavaRMI. Access and location:
transparency between the local object and the
remote object is provided to a programmer. How-
ever, since it does not support any resource
management mechanism, it is possible that some
heavily loaded nodes are present. ‘

Charlotte[11]

memory and uses a fork-join model for parallel

provides a distributed shared
programming. Its distinctive feature is the 'eager
scheduling of tasks where a task may be submitted
to several servers to provide for fault tolerance and

ensure timely execution. This allows a task to be

resubmitted to a different server, in case the
original server fails. But compared to simpler
message-passing  systems, maintaining  correct
memory semantics requires a high overhead.

Moreover, it requires programmers to learn a new
programming paradigm like that of POPCORN.
Java//[12]

development of metacomputing applications.. The

provides a framework for ; the
most important feature of Java// is that it provides
very smooth transition among sequential, multith-
and - distributed

sequential Java

readed programming. Given a

program, it only takes minor
modifications for the programmer to make it ready
for metacomputing. Dejay[13] is a:new Java—based
programming language that unifies concurrency and
distribution into a single mechanism. This allows
simplification of the development of distributed or
concurrent programs. HORB[14] extends the Java
language by providing a remote procedure call
mechanism. Although HORB can run in Java applet
using a Web browser, the node running the applet
can only connect to its originating host and acts as
a client of the system. This restricts HORB users
to the traditional client-server programming model.
Moreover, since users of Java//, Dejay and HORB's
must specify the address of a target server for
remote objects, location transparency is not
supported for them. They likewise do not support

any resource management mechanism.
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Table 1 Comparison of Related Works

ATLAS | ParaWeb | SuperWeb | POPCORN DIM Charlotte | Java// | Dejay HORB Tiger
\Aé(élalﬂamgc X X Support Support X Support X X Supporl | Support
N -
! TOBAmMIING X Difficult Easy Diflicult Easy Dilficult Easy Easy Fasy Easy
Paradigm
e Location X Support X Support Support | Support X X X Support
Transparency
Ql)}egt x X X X X % X Support X Support
Migration
Resource ) . .
S It X X X N It S - X X X Sy, 3
Management Support Support upport \Dpor
Location
X X X X X X X X X Su ri
Management PpO

3. System and Object Models

3.1 System Model

Our system model consists of six kinds of major
components:  users, brokers, hosting  applets,
gateways, regions, and a manager (Fig. 1).

® [Jsers wish to use extra computing power in
order to run parailel and distributed applications
with large computations.

® Brokers manage the user applications and
coordinate all communication between Tiger and

the applications. It is necessary for a user to

execute a broker before executing his or her
application.

e Hosting applets allow their CPU resources to
be used by other users. Their general form is a

Java applet in a Java—enabled web browser.

Globally Sxtended
Computing Pesources

O Galeway

D Hosting Applet in Biowse)

O Distribuled or Paiallel Process

O Broker for supporting user

Tig. 1 The Tiger System Architecture

® (ateways manage parts ol all hosting applets
and coordinate all communication between hosting
applets and other components in the Tiger system.
We assume that each gateway serves exactly one
region.

® [fegions consist of hosting applets managed
by a gateway. Regions are generated by grouping
hosting applets that yield similar duration for
communication to and from a gateway managing
them.

o A manager registers and manages all partici-
pating brokers and gateways.

When CPU donors make their resources available
to Tiger by browsing the HTML document on the
part of the manager, the web server in the
manager redirects the request to the gateway with
the shortest period for communication to and from
the CPU donor's

server in the gateway sends the hosting abplet

machine. Therefore, the web
code to the participating browsers.

The primary function of the manager consists of
resource management for all regions and location
management for all mobile objects in the Tiger
system. The primary function of gateways, on the
other hand, consists of resource management for
hosting applets managed in its associated region,
and location management for the mobile objects
visiting the associated region.

There are two important reasons our model must
provide gateways. The first reason is to the model
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must facilitate the distribution of the manager's

massive load, Because of the heavy network traffic

generated hy various brokers and Thosts, the
manager may experience a bottleneck. To reduce
traffic on the manager, one natural solution is to
distribute the manager functionsThe second reason
results from severe limitations on the capabilities of
Java applets, since they are used to execute
programs from the Internet without valid security
certificates. Applets cannot create a server socket
to accept any incoming connection,  while
Java—capable browsers do not allow applets from
establishing a network connection except to the
machine from where they were loaded.

Using gateways as the intermediate message—
exchange nodes, we allow an applet to communi-
cate with any applet within the' same region (Fig.
2(a)) or in different regions (Fig. 2(b)). Both broker
and gateway mediate message exchanges between
user applications and hosting applets (Fig. 2(c)).
Two different wuser applications can likewise
communicate through each associated broker (Fig.

2(d)).

Connection
Gateway Network
Host
(a) (b) (o) (d)

Fig. 2 The Communication Model

8.2 Triple-Object Model

Tiger is designed as an object-oriented glohal
system which expresses computations as autono—
mous communicating entities referred to as objects.

We use a triple-object model in Tiger consisting of

normal (local) objects, distributed ohjects and
mobile objects. Normal objects are similar to
standard Java objects. Distributed objects are

placed in other user machines rather than in the

one where local objects are placed. Like distributed

&8 T AR A9 Zyda 559

objects in CORBA or JavaRMI, they are remotely
accessible and their locations are fixed to the user
machine where they are created. Mobile objects arei
similar to distributed objects except that they can
change their current location from a user machine
or-a hosting applet to other hosting applets. The
distributed object and mobile object are the hasic
units for distribution and concurrency. Users have
to specify explicitly which objects are distributed or
migrated.

A requested method call on a distributed or
mobile object is either executed or queued depend-
ing upon an object's state at the time of its
arrival. A distributed or mohile object can be in
one of three states: dormant, active, and waiting.
The one dormant is not executing any method
currently, and there is no requested method call in
the message cueue. The one in active state is
currently executing a method, while the one in
waiting state is waiting for a specific response to a
method call issued while in the active state. When
an acceptable response arrives, the object will
return to the active state. In the Tiger system,

only dormant objects can be moved.

4. Parallel and Distributed Programming

When designing an object-oriented application,
programmers start with high—-level abstractions and
turn them into objects and classes. Programmers

are usually eager in modeling and dealing with

algorithmic issues ahout the application. Our
programming model concentrates on a clear
separation between high-level design and
lower-level implementation issues such :as

distribution, dispatching, migration of objects, and
controlling concurrent activities. When dealing 'with
globally distributed objects, the power of the Tiger
lies in that any client process or thread in the local
machine can directly interact with the server object
that runs on a globally distributed user machine
and a hosting "applet through a remote method call,
although the server object may migrate among

them. !
4.1 TigerObject Interfaces
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A server object must declare its service via an
interface by extending the TigerObject interface.
Each remote method is declared in the interface.
Like JavaRMI, client stub and server skeletons are
generated from this interface and the
implementation of client and server object is done
using this interface.

4.2 Objects—distributing Mechanisms

Tiger provides us with three application pro-
gramming interfaces (hereinafter referred to as the
APIs) related with distributing server objects.

o turnToDistributedObj(TigerObject obj,

name)

String

This converts an existing local object, namely
obj, into a distributed object at any time after its
creation. The distributed object becomes remotely
accessible and its location is fixed. The stub object
is registered to the naming subsystem together
with a given argument name. The stub acts as a
handle for clients to reference the remote server
object. The client can call methods on the stub,
which are routed by the client broker to the server
broker, where the skeleton executes the method
upcall on the actual server object (Fig. 3(a)). This
mechanism is similar to that in the CORBA and
JavaRMI.

o turnToMobileObj( TigerObject obj, String name)

o turnToMobileObj( TigerObject obj, String name,

Region destRegion)

Unlike CORBA and JavaRMI, on the other hand,
Tiger allows the local or distributed server object,
namely obj, to migrate from the generating machine
to a hosting applet in a globally extended
computing resource. Programmers do not present
such information, or they can present only regional
information, such as destRegion. If regional
information is presented, the object’s location can
be changed only within the region. However, if the
object is not allocated, its location is not fixed and
it can re-migrate to any hosting applet across all
regions without the users awareness. It is noted
that a client process or thread does not know the
hosting applet.

detailed location of the target

Therefore, Tiger provides users with location and

migration transparency. Through such migration
mechanism, we can reduce the burden on a server

machine and gain performance benefits (Fig. 3(b)).

17 Drtmbuted
Chient Obgeet 1 | goriar Qhgect
obj1 | e

|

[
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method
| wpcan

Stub |
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Extended
polet | /[ Computing
Desource

Conneation Network

(a) ‘ b

Fig. 3 Object Distributing Mechanisms

4.3 Parallel Objects-dispatching Mechanisms

Object-oriented parallel programs are . largely
divided into two parts: the main control program,
which provides a whole body for solving a given
the TigerObject,

tasks to be executed in parallel. The main control

problem; and which describes
program must dispatch a number of TigerObjects
into the globally extended computing resource and
call remote methods on the dispatched objects. It
can likewise watch loads imposed on each region,
and balance those using object migration. Tiger
provides us with the two APIs related to
dispatching parallel TigerObjects.

o turnToMobileObj( TigerObject obj)

o rurnToMobileObj( TigerObject  obj,

destRegion)

Region

These methods dispatch an existing local object,
namely obj, into a hosting applet in the globally
extended resource. This object then becomes
remotely accessible from the main control program
(Fig. 4). It is not required to provide the name of
the object since the object is used only by the
itself

allocates the globally unique identifier to the object.

main control program. Tiger internally

It is noted that its location is not fixed in the
dispatched hosting applet and that it can re-migrate
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Fig. 4 Parallel Object Dispatching Mechanisms

to other hosting applets.

4.4 Getting Distributed or Mobile Objects Back

o returnToLocalObj(TigerObject obj)

This method reverts a distributed or mobile
object into a local object. If the argument obj
indicates a distributed (not mobile) server object, a
remote client process or thread cannot call any
remote method on the server object. On the other

hand, if the argument obj indicates a mobile object,
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applet where the object is currently located. The
stub and skeleton associated with the object are
eliminated from the client and server machines,
respectively. The object is drawn to the local
machine and all method calls on the object are
henceforth done within the local address space.

4.5 Remote Method Call and Concurrency

Concurrency can be used to perform a com-
putation in parallel on several machines or on one
machine simulating parallelism. In Java, threads
only serve as a mechanism to express concurrency
on a single host, but they do not allow concurrency
hetween remote hosts. Therefore, there exists a
huge gap between multithreaded and distributed
concurrent programming.

Although

synchronous, there are three concurrency- enhanced

method calls in Java are only

mechanisms provided to call a remote method in
the Tiger model: synchronous, asynchronous, and
one-way. A synchronous remote method call is
typically similar to the method call in Java. The

calling object must be blocked until the result is

the object is eliminated from the remote hosting returned. Its form is the same as that of the

class MatrixMultiply {
public static void main{String[] args) {
Matrix mA, ml3, resultM;
// code ol initializing mA, mB, and resultM

TaskObj[1[] obj = new TaskObj[10]1[10];
for (int1=0;1<10; i++) {
for (intj =0;37 <10 ; j+1) {
Matrix subA = mA.getSubMatrix(i = 10, 0, 10, 100);
Matrix subB = mB.getSubMatrix(0, j = 10 , 100, 10);
objlil [j1 = new TaskObj(i, j, subA, subB);
objli][j] = (TaskObj)Tiger.turnToMobileObj(obj (1] [j1);
}
}

AsyncReply[] [] reply =
for (inti=0;1i<10;

AsyncReplySet replySet = new AsyncReplySet();

new AsyncReply[10]{10];
i++) |

for (int j = 0;j <10 ; j++) {
replylil[j] = Tiger.asyncMethodCall(task{i] [j], “multiplyMatrix”, null);
replySet.add(reply [i] [j1);
z} '
}
for (inti=0;1<10; i) {
for Gntj =0 ;3 <10 ; ji+) {
Matrix m = (Matrix)reply [i][j].getResult();
resultM.setSubMatrix(i = 10, J = 10, m);

Fig. 5 A Reference Code
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standard method call. The asynchronous remote
method call has a future style, in which the caller
may proceed until the result is needed. For this
duration, the caller is blocked until the result
becomes available. If the result has been supplied,
the caller resumes and continues. To support the
asynchronous mode, we provide asyncMethodCall
Object[]

args) API, AsyncReply and AsyncReplySet classes

(TigerObject obj, String methodName,
of which the usage is shown in Figure 5. By using
these classes and API, it is possible to issue
several asynchronous calls to remote objects that
Lastly, the

method call is also

are executed in parallel one-way

remote asynchronous. The
caller, however, will not retain anything related by
this method call, and the party being called will
never have to reply to it. This is referred to as the
fire-and—forget style.

To distinguish among these three mechanisms,
declared in a

each remote method, which is

user-defined interface extending the TigerObject
interface, must throw one among SyncMethod
CallException, AsyncMethodCallException, and
onewayMethodCallException. These three exceptions
specify what the method’s behavior style is.

Figure 5 presents the referential code using
Tiger programming libraries that multiply the two
100X 100 matrices. The

hundred TaskObj—type mobile objects, and send one

program creates one
hundred asynchronous methods, "multiplyMatrix,” to
the objects.

5. Functional Requisites

On the Web, all hosts wherein hosting applets

reside, may manifest different performance and

memory capacity, which may change variously
during the long execution time. Therefore, it is
essential that Tiger has a resource management
scheme in treating these dispositions on the Web.
In Tiger, since an object is the migrant unit of
computation, object migration can be a suitable
way to balance the workload on all the hosting
applets. At a given periodic interval, Tiger moves
from  overloaded applets  to

objects hosting

under-loaded hosting applets. There may be
numerous method call requests during the migration
of many objects. Therefore, in order to effectively
provide users with migration transparency and
support the mobility of mobile objects, a proper
location management scheme is required.

5.1 Resource Management

Tiger uses two important parameters for resource
management: Object Population Density(OPD) and
Call to Performance Rate(CPR) for all regions and

hosting applets. Suppose that Cy, and Cp, are the

memory capacities of a region { and a hosting
applet / in region i, respectively. Pp and P, are
the computational processing rates of a region §
and a hosting applet j in region i, respectively.

When the number of hosting applets in region 1 is

Nuwd [, Nl

defined by NumH,, C.= ZI Cy, and Py = Z‘.l Py, .
= =

The computational processing rate is estimated by
solving a dense 100X 100 linear system of equations
using the Linpack library package[l5], and its
MFLOPS (million

instructions per second).

measure is floating point
Both performance of a region { and that of a
given by

Perfy,=aCy, +8Pp,

applet j in region i are

Perf o, =aC p+ APy,

hosting

and

respectively, where e and f are scale parameters.
The OPD of a region { and that of a hosting applet
j in region i are defined by

NOp,

OPD = m (1)
NO i,

OPD j; = Perfyy, (2)

where the number of objects in region i is given
Numl!,

by NOg= /; NOy, and NOy, is the number of
objects in a hosting applet j in region i.
On the other hand, the CPR of region { and that

of a hosting applet j in region { are defined by

NCyg,

CPR 1= it (3)
NC i,

CPR 11, = Ty (4)

where the number of call arrivals to region i is
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given hy NC,= Z} NCy, and NCy is the
£

number of call arrivals to a hosting applet ; in
region I.

Tiger resource management is carried out by . the
global resource manager and the regional resource
mobile object into

managers. Dispatching  the

globally extended resources, the global resource

manager selects the région with the lowest OPD,
value. When the mobile object enters a region, the

specific regional resource manager selects the

hosting applet with the Jowest OPDy, value. At a

given periodic interval, the global resource manager
from a region to

CPR s for all

some mobhile objects

both

moves

another in order to keep

regions in  equilibrium. ‘All  regional = resource
managers likewise move some mobile objects from
a hosting applet to another in the same region in

order to keep CPRy; s for all hosting applets within

each region in equilibrium..
In addition, Tiger presents the user—level global

resource management tools, which can be used

wifh mobile objects turned by the

()bieCtS*diSU'ibUtiOH or ObjGCtS*dI:SpatChI'l‘lg APIs
with the destRegion argument. The tools allow a

user to get both OPD, and CPR, of a region and

to measure the time needed to execute an

asynchronous method for each region. Figure 6
describes an example where user-level resource
management tools are used. Initially, the two
: regions[1], are
OFD p

value. The two TigerObjats, foo and bar, are

TigerRegion, regions/0] and

selected as the regions with the lowest
dispatched  to  regions[0] and  regions(1],
respectively. After two asynchronous methods with
the same computing quantity, factorial, are called at
the foo and bar, respectively, the returned
Asynclleply objects, replyl and reply2 are added to
the AsyncReplySet object, replySet. When results
for the remote methods arrive, the 1)roéessing times
for the calling asynchronous methods are
determined and stored in the AsyncReply objects.

Users can inquire about each processing time by

o
& T %

o
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using the getProcessingTime methods on .both
replyl and reply2. 1t is the user’s responsibility, to
establish a basis on which whether Tiger moves an
object from an over-loaded hosting applet to an

under-loaded hosting applet or not would depend.

Factoral TigerObject fov = new Factonal TigerObject():

Faclorial TigerObject bar = new FactorialTigerObject();

TigerRegion(] regions = Tiger.getRegionsSorledByLowOPD();

foo = Tiger.turnMobileObj(foo, regions[0]);

bar = Tiger.lurnMobileObjibar, regions[1]);

AsyncReplySet replySet = new AsyncReplySet();

AsyncReply replyl, replv2 :

replyl = TigerasyncMethodCallt{oo, "Tactorial”, argl);

reply2 = TigerasyncMethodCalllbar, "lactorial”, arg2);

replySel.add(reply1);

replySet.add(replyv2);

whileUreplySel.isAllAvailabled));

i (replyl.getProcessingTime() > 2xreplyv2.getProcessing Time()
foo = Tiger.turnMobileObjtfoo, regions[1]),

Fig. 6 Example of user-level load balancing scheme

5.2 Location Management

Our current scheme for location management is
based on a two-level hierarchy such that two types
of manager, the Home Location Manager (HLM)
Manager (VILM), are
involved in tracking a mobile object. There is an
HLM
permanently registered in the HLM associated with

and the Visitor Location

in each broker, while a mobile object is
a broker where the mobile object is created. The
broker serves as the home broker of the mobile
object. The mobile object chooses the IP address of
the broker as its home address. Each VLM, is
associated with a gateway and stores the location
of the i

associated region. Whenever a mobile object moves

information mobile objects visiting its

into a new region, the mobile object’'s HLM is
informed of the location change so that it keeps
exact track of the current VLM.

includes two major

Our location management

tasks: location registration and method call
delivery. Location registration procedures update the
(HLM  and VLM)

authenticate that up-to-date location information of

location  managers ‘and

a mobile object is available. When a remote method
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call for the mobile object is initiated, method call
delivery procedures locate a mobile object based on
the information available in the managers and
deliver the method call to the target mobile object.

Figure 7(a) illustrates the location registration
procedure when a mobile object moves to a hosting
applet within the same region. The following is the
ordered list of tasks performed during the location
registration.

1) The gateway locks the field associated with
the mobhile object in the VLM such that all external
call delivery requests must wait until the lock is
released.

2) The gateway sends the object migration
message to the hosting applet where the target
object is located.

3) The target object migrates to the new hosting
applet indicated in the object migration message.
The gateway is used as the intermediate node for
object-forwarding.
hosting ‘sends  an

4) The new applet

acknowledgement message notifying that object
migration was done successfully.

5) The gateway records the new hosting applets’
address for the mobile ohjects and unlocks the field

associated with the mobile object in the VLM.

= message
— object migration

Gonnection Network

object

Hosling Applets Hosting Applet Hosling Applet

Degion Region Degion

(a) (b)
Fig. 7 Location Registration Procedures

Figure 7(bh)

procedure when a mobile object moves to a hosting

illustrates the location registration
applet within a new region. The following is the
ordered list of tasks performed during the location

registration process.

1) The home broker locks the field associated
with the mobile object in the associated HLM such
that all external call delivery requests wait until
the lock is released.

2) The home broker sends the objéct migration
message to the gateway managing the region
where the target object is located.

3) The gateway locks the field associated with
the mobile object in the VLM such that any
external call delivery request waits until the lock is
released.

4) The gateway sends the object migration mes-
sage to the hosting applet where the target object
is located.

5) The target object migrates to the new hosting
applet, which is selected by the new gateway
managing the region as indicated in the object
migration message.

6) The old gateway sets up a forwarding pointer
by recording the new gateway's address in the
VLM and unlocks the field associated with the
mobile object in the VLM. ‘

7) The new hosting applet sends an acknow-
ledgement message notifying that object migration
was done successfully. ‘

8) The new gateway records the new hosﬁng
applets’ address for the mobile objects in the VLM
and sends the migration complete message to the
home broker.

9) The home broker records the new gateway’s
address and unlocks the field associated with the
mobile object in the HLM.

‘When a remote method calling is requested by a
user application, two major steps for method call
delivery are involved for the stub to locate the
skeleton associated with the implementation object:
determining the visiting region of the called mobile
object, and locating the current hosting applet
within the region.

In Tiger, the method call delivery uses triangle
routing ) involving the following ordered list of
tasks. Triangle routing means that the message
from a calling stub to a called skeleton must first
be routed via the mobile object’s home broker.
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1) A calling stub sends a method call recquest to
the home broker using the called skeleton’s home
address.

2) The HLM in the home broker determines the
current location of the called skeleton.

3) If the skeleton exists in the home broker’s
node, the home broker delivers the method call
request to the called skeleton and the method call
deliVery procedures are successfully carried out.

4) H the skeleton does not’ exist in the home
node, the HLM

VI'M of the called skeleton and the home broker

broker’s detéermines the serving
relays the method call request to the gateway
associated with the VLM.
"5) The VLM determines the serving hosting
applet of the called skeleton and relays the method
call request to the hosting applet. ‘
6)" The hosting applet delivers the method call
1"e<iLlest into the called skeleton and the method call
deiivery procedures are achieved successfully.
method call delivery

Figure 8 shows the

procedure when the mobile object locates in a

hosting applet. This is similar to the triangle

routing scheme in mobile IP [16].

calling

| !

[ t

| [

| f
Home Broker | | Stub

| {

. |

| |

| |

I l

- ~

Gateway
T rtanglbl roalizg

of wethod call

implementation
object

9

Hosting Applet

Fig. 8 Method Call Delivery Procedures
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6. Experimental Results

We conducted illustrate the

speedup achieved by Tiger. The target applications

experiments  to

(or the experiments are fractal image processing

and genetic-neuro—fuzzy algorithm. The system
manager runs on Pentium 333Mhz while three

gateways run on Pentium 200, 233, 266Mhz using
Java virtual machine in JDK 1.2.1. Ten hosting
45 or
Internet Explorer- 4.0 on heterogeneous ' machines
connected by 10Mb/s Ethernet.

6.1 Fractal Image Processing

applets run in  Netscape Communicator

representation of fractal image
the Mandelbrot set. The

Mandelbrot set is the set of all points that remain

A popular
processing * lHes within
bounded for every iteration of z= zxz+c¢ on the
complex plane, where the initial value of z is 0 and
¢ is a constant. The size of the bit-image is 256
256 pixels.

responsibility  for

independent subtask has a

coloring 256X 8

Each
pixels  with
considerable floating point computation. Therefore,
the number of subtasks is 32. Our parallel fractal
image processing is initiated by dispatching sixteen
Tiger objects having the asynchronous remote
method able to generate a Mandelbrot set. A
calling of i the remote method corresponds to a
subtask. There are 2 calls by each object. The
of the

information for 256X 8 pixel.

return  value method is the coloring

We measured the time needed to generate the
Mandelbrot set by changing the number of hosting
applets, and the results are presented in Figure 9.

The figure shows that, the more the number of

6 -~ . —

Speedup
N o wo oA o

N

()]

1 2 3 4 5 6 7 8 9 10
Number of Hosting Applets

Fig. 9 Speedup for the number of hosting applets:
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hosting applets increases, the more the speedup

increases. The speedup, however, decreases
whenthe number of hosting applets is over nine.
This is attributed to the low-bandwidth of
networks, the overhead of communication, and short
execution time of the remote method. Therefore,
when users construct a remote method, they must
make inputs and outputs of the method compact.
However, the method’s remote execution time must
he long, if possible.

6.2 Genetic-neuro—fuzzy Algorithms

Genetic—neuro—fuzzy algorithms are a hybrid
method for neuro-fuzzy systems based on genetic
algorithms, used to find the global solution for
neuro—fuzzy system parameters. They always begin
by randomly generating an initial population after

they encode the parameter into chromosomes. Then,

they rtun iteratively repeating the following
processes until they arrive at a predetermined
ending conditions: extracting  fuzzy rules,

self-tuning, fitness evaluation, reproduction, and

performing  genetic operators (crossover and
mutation). It requires much computational time to
construct a fuzzy system from a chromosome. The
communication time, however, hardly affects the
total processing time. Therefore, Tiger is suitable
for executing genetic-neuro—fuzzy algorithms.

A major characteristic of our genetic-neuro-fuzzy
algorithm is that the capability-based adaptive load
balancing is supported to reduce total working time
for obtaining an optimal fuzzy system. Such load
balancing is done using Tiger's user-level global
resource management tools. Let 7; be the time

that is taken to execute the operations of

chromosomes allocated to Region i and NF; be the

sum of the number of fuzzy rules processed in
each chromosome allocated to the Region i. Then,
the number of chromosomes which will be allocated

to Region i at next generation, N, is defined by
N,=N,- % , where C;= % B)
[Z;) = I

In equation (5), N. is the total number of

chromosomes given in the system, N, is the

] A3 A6 A A6 FQ000.12)

Table 2 The parameters for our genetic-neuro—

fuzzy algorithms

population size 50 prob. of crossover 0.3
number of generation| 50 prob. of mutation 0.15
chromosome size 48 learning iteration 50

number of Regions currently participating in the
system, and C, is the capability, the number of

fuzzy rules processed in unit time, of Regions i.

Using equation (5), we can determine the number
of chromosomes allocated to each region in the
next generation, and can move some chromosomes
to other regions using Tiger's APIs. The goal of
our algorithm is to make a fuzzy system that can
approximate the three input nonlinear functions
defined by

output=(1+z" "% +y 14+ 27192 (6)

A total of 216 training data are

uniformly from input ranges

sampled
[1.6] x [1.6] X [1.6].
The parameters for the genetic-neuro—fuzzy
algorithms used in the experiment are summarized
in Table 2.

Figure 10 presents the speedup curve according
to the change in the number of hosting applets,
while Figure 11 shows the efficiency of
capability—based adaptive load balancing scheme. In
Figure 11, NOLB represents a scheme that does
not use load balancing, while CALB represents the
use of capability-based load balancing. We
conducted the experiments on eight hosting applets

and ten hosting applets, respectively. When there

10

Speedup

0 2 4 6 8 10
The Number of Hosting Applets

Fig. 10 Speedup for the number of hosting applets
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Fig. 11 The efficiency of load balancing

are 8 hosting applets, CALB provides performance
1.89 times better than NOLB. Similarly, when there
are 10 hosting applets, CALB vyields performance
1.80 times better than NOLB. Detailed experiments
of our genetic-neuro-fuzzy algorithms using ;Tiger

are described in [17].
. 7. Conclusions

We have designed and implemented Tiger, a

global computing infrastructure, that 15 able to use

computing  resources  of numerous machines
connected to the Web. Tiger provides noble
object-oriented programming libraries supporting

distribution, dispatching, migration of object and

concurrency among computational activities. These
Kbraries, together with Tiger’'s infrastructure, allow
a programmer to easily develop an object-oriented
parallel and distributed application using globally
extended computing resources. We did not present
details of the resource management scheme here,

but we believe that two parameters, OPD and CPR,

are good standard measures for resource
management in object-oriented global computing
supporting object migration. The location
management scheme is based on a two-level

hierarchy such that two types of database, GLM
and RLM, are

numerous mobile ohjects locations within globally

suitable for keeping track of

extended computing resources.

We are currently working on an extended

8 %9
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version of Tiger that supports a mechanism with
fault tolerance, result verification and user privacy.
We believe that the future version of Tiger Will be
a robust and Higlrperformance glob_al computing

mlrastructure.
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