보안 장비에서 발생하는 로그는 그동안 ESM(Enterprise Security Management) 기반으로 통합적으로 데이터를 분석하였으나 데이터 저장 용량의 한계와 ESM자체의 데이터 처리 성능의 한계로 빅데이터 처리에 부적합하기 때문에 빅데이터 플랫폼을 이용한 보안로그 분석 기술이 필요하다. 빅데이터 플랫폼은 Hadoop Echosystem을 이용하여 대용량의 데이터 수집, 저장, 처리, 검색, 분석, 시각화 기능을 구현할 수 있다. 현재 ESM기술은 SIEM(Security Information & Event Management)방식으로 기술이 발전하고 있으며 SIEM방식의 보안기술을 구현하기 위해서는 현재 보안장비에서 발생하는 방대한 로그 데이터를 처리할 수 있는 빅데이터 플랫폼 기술이 필수적이다. 본 논문은 Hadoop Echosystem 이 가지고 있는 빅데이터 플랫폼 기술을 활용하여 보안로그를 분석하기 위한 시스템을 어떻게 구현할 수 있는지에 대한 모델을 연구하였다.
Journal of the Korean Data and Information Science Society
/
제26권5호
/
pp.1035-1045
/
2015
최근 빅데이터 분야에서 데이터를 메모리에 적재 후 빠르게 처리하는 인메모리 컴퓨팅 기술이 새롭게 부각되고 있다. 인메모리 컴퓨팅 기술은 과거 대용량 메모리와 다중 프로세서를 탑재한 고성능서버에 적용 가능하였지만, 점차 일반 컴퓨터를 초고속 네트워크로 연결하여 분산 병렬처리가 가능한 구조로 변화하고 있다. 본 논문은 In-memory data grid (IMDG) 기술을 택시 애플리케이션에 접목하여 기존의 데이터베이스의 변경 없이 성능을 향상시키는 기법을 제안한다. IMDG 기술을 적용한 경우 기존의 데이터베이스 기반의 웹서비스에 비해 처리속도와 처리량이 평균 6~9배정도 증가하며, 또한 부하량에 따른 처리량 변화의 폭이 매우 작음을 확인 하였다.
이기종의 다양한 장비로 구성된 현대의 네트워크는 분산 설치되어 있고, 이를 중앙 집중적이면서 효율적으로 관리하기 위해서 NETCONF 표준이 제정되었다. 본 논문에서는 NETCONF의 각 계층에 대해 개선한 연구를 포함하여 하나의 시스템으로 통합하는 작업을 수행하였다. RPC 계층에서는 멀티스레드를 사용하여 비동기 통신 채널 및 병렬 처리가 가능하도록 하였고, Operation 계층에서는 장비 설정 데이터 간 종속성을 이용한 데이터 그룹을 활용하여 연산의 효율성을 증가시켰다. Operation 계층과 연동할 수 있도록 Content 계층에서의 설정 데이터 모델링 기법에 대해서도 제시하였다. 마지막으로 GUI 프로그램을 구현하고 구현 결과를 나타내었다. 개선된 NETCONF와 표준 NETCONF를 질의 처리율, 질의 처리 속도, CPU 사용률에 대해 비교하는 실험을 수행한 결과 질의 처리율과 처리 속도에서는 개선된 NETCONF가, CPU 사용률에서는 표준 NETCONF가 우수하였다.
그리드 시스템은 넓은 지역에 분산되어 있는 이질적인 자원들로 구성되어 있어서 가까운 지역에 비교적 동질적이고 통제가 가능한 자원들을 대상으로 하는 전통적 병렬시스템의 스케줄링 알고리즘으로는 효율적인 작업처리가 불가능하다. 본 논문에서는 그리드 시스템의 특성을 반영한 알고리즘을 제안하기 위해 기존의 스케줄링 알고리즘에서 사용하고 있는 정보의 종류에 초점을 두고 선행연구에서 제안된 알고리즘들을 비교 분석하여 개선할 수 있는 요소들을 도출하였다. 알고리즘들을 비교 분석한 결과 프로세서의 수나 성능과 같은 자원의 정적 정보가 스케줄링 알고리즘에 유용하게 사용될 수 있으며, 처리속도가 극단적으로 느리거나 사용이 불가능한 자원을 회피하기 위한 수단이 필요하고, 비교적 장시간 처리를 하는 그리드의 특성상 자원의 실시간 부하정보를 이용하는 경우 효용성이 떨어지는 것을 확인할 수 있었다. 본 논문에서는 이러한 분석 결과를 바탕으로 WQR(Workqueue Replication) 알고리즘의 논리에 정적 자원정보를 고려하도록 개선한 새로운 알고리즘(WQRuSI)을 제안하였으며, 시뮬레이션을 통하여 새로운 알고리즘의 성능이 우수함을 확인하였다.
클러스터링은 빅데이터 분석 및 데이터 마이닝 분야에서 데이터 간 유사성을 파악하기 위해 사용하는 기법으로 다양한 클러스터링 기법 중 범주적 데이터를 위해 k-Modes 알고리즘이 대표적으로 사용된다. k-Modes와 같이 반복적 연산이 집중된 작업의 속도를 향상시키기 위해 많은 관심을 받고 있는 분산 병행 프레임워크 스파크는 하둡과 달리 RDD라는 추상화 객체 개념을 사용하여 대용량의 데이터를 메모리 상에서 처리 가능한 환경을 제공한다. 스파크는 다양한 기계학습을 위한 라이브러리인 Mllib을 제공하고 있으나 연속적 데이터만 처리 가능한 k-means만 포함되어 있어 범주적 데이터 처리가 불가능한 한계가 있다. 따라서 본 논문에서는 스파크 환경에서 범주적 데이터 클러스터링을 위한 k-Modes 알고리즘을 위한 RDD 설계하고 효과적으로 동작할 수 있는 알고리즘을 구현하였다. 실험을 통해 제안한 알고리즘이 스파크 환경에서 선형적으로 증가한다는 것을 보였다.
최근 급격히 증가하는 공간 데이터를 효율적으로 처리하기 위해 많은 연구들이 진행되고 있다. 기존 관계형 데이터베이스 시스템을 확장한 공간 데이터베이스 시스템은 확장성에 대한 문제가 있으며, 분산 처리 플랫폼인 하둡을 확장한 SpatialHadoop은 중간 연산 결과를 디스크에 작성하기 때문에 파일 입출력의 오버헤드로 성능이 저하되는 문제가 있다. 본 논문은 인-메모리 기반 분산 처리 프레임워크인 스파크를 확장한 공간 연산 스파크를 제안하였다. 또한 공간 연산 스파크의 성능을 향상시키기 위하여 GPGPU를 결합한 모델을 개발하였다. 공간 연산 스파크는 중간 연산 결과를 메모리에 유지시키는 스파크의 특징을 그대로 사용하고 있으며, GPGPU 기반 공간 연산 스파크의 경우 다수의 PE를 이용하여 병렬처리하기 때문에 효율적으로 공간 연산을 수행할 수 있다. 본 논문은 단일 AMD 시스템에서 공간 연산 스파크와 GPGPU 기반 공간 연산 스파크를 구현하였다. 공간 연산 스파크와 GPGPU 기반 공간 연산 스파크의 성능을 평가하기 위하여 Point-in-Polygon 연산과 Spatial Join 연산을 수행하였으며, SpatialHadoop에 비하여 최대 8배의 성능 향상을 확인하였다.
휴대용 단말기에서의 동영상 및 3차원 영상을 처리하는 것이 일반화되면서, H.264 및 3차원 그래픽 가속기 데이타를 처리하기 위한 연산량이 크게 증가하고 있다. 본 연구에서는 H.264 인코더의 움직임 추정기 및 디코더의 움직임 보상기와 3차원 그래픽 렌더링 가속기를 재구성 가능하도록 설계하였다. 움직임 추정기는 효율적인 데이타 스캐닝 방법과 DAU, FDVS 알고리즘을 사용하여, JM8.2에 제시된 다중 프레임 움직임 추정보다 연산량을 평균적으로 70% 이상 감소시키면서 화질 열화가 없도록 하였다. 3차원 그래픽 렌더링 가속기는 중심선 트래버셜 알고리즘을 사용하여 병렬 처리하도록 함으로써 처리량을 증가시켰다. 움직임 추정기와 3차원 렌더링 가속기의 메모리를 재구성 가능한 구조로 설계하여, 2.4Mbits (47%)의 메모리를 공유하였으며, 메모리를 8개의 블록으로 분산시켜 사용되지 않는 부분의 전력 소모를 최소화 할 수 있도록 하였다. 또한, 움직임 보상기와 3차원 렌더링 가속기의 픽셀 프로세서를 공유하여 약 7%의 하드웨어면적을 감소 시켰다.
지금까지 다중스레드 모델을 위한 다중스레드 코드의 생성 및 스레드 분할에 대 하여 이루어진 연구는 실행시간을 번역시간에 예측할 수 없는 연산을 경계로 삼아 스 레드를 분할하고, 스레드의 길이를 증가시키기 위하여 주어진 제약조건내에서 스레드 를 병합하는 것이다. 이러한 정책으로 인하여 병렬성이 적은 프로그램이라 하여도 원 격자료 접근이 많으면 스레드의 길이가 짧아지고 그에 따라 문맥전환이 늘어나기 때 문에 시스템에 부담이 된다. 본 논문에서는 스레드의 길이를 늘이고, 메세지 전송횟 수를 감소시키기 위한 다른 방법으로 프로그램의 루프에서 접근되는 배열의 첨자를 분석하고 이를 바탕으로 루프 액티베이션에서 참조되는 배열의 원소를 해당 루프 액 티베이션이 수행되는 노드에 분산 저장하는 배열의 지역화방안을 제안한다. 배열을 지역화하기 위하여 먼저 루프 액티베이션에서 접근되는 배열의 이름, 루프 첨자와 접 근되는 배열원소의 첨자간의 차이인 종속거리 그리고 배열원소의 용도에 관한 정보를 얻기 위한 원소 접근 형태 분석을 수행한다. 원소 접근 형태 분석으로 부터 얻어진 정보를 이용하여 가능한한 지역 기억장치에서 필요한 배열의 원소를 읽어올 수 있도 록 배열 원소에 접근하는 루프 액티베이션이 수행되는 처리기 모임의 지역 기억장치 에 배열원소를 저장하는 배열 지역화를 수행한다. 실험결과, 배열을 지역화함으로써 다른 처리기 모임의 지역 기억장치로부터 배열의 원소를 읽어오기 위한 원격자료 접 근을 지역자료 접근으로 대치함으로써 원격접근의 수가 줄어든다. 이로 인하여 스레 드의 길이가 증가하며, 원격접근 횟수 및 문맥 전환의 수가 줄어들어 시스템의 성능 향상을 꾀할 수 있었다.
현재 대부분의 소셜 네트워크 서비스에 대한 시각화방법들은 네트워크 자료를 시각화하여 표현하는 것에만 중점을 두고 있으며, 기하급수적으로 증가하는 소셜 네트워크의 빅데이터 처리에 대한 계산량 및 효율적인 처리속도는 전혀 고려하지 않고 있다. 본 논문은 소셜 네트워크의 사용자 노드 간의 계층 관계를 사용자 중심으로 시각화하는 클라우드 기반의 방법을 제안한다. 제안방법은 퍼지를 이용하여 소셜 네트워크 노드의 계층 관계를 표현함으로써 사용자의 사회관계를 직관적으로 이해할 수 있으며, 소셜 네트워크에서의 사용자들의 중심 역할 관계를 쉽게 파악할 수 있다. 또한 클라우드 기반의 하둡(hadoop)과 하이브(hive)를 이용하여 시각화 알고리즘을 분산병렬 처리함으로써 소셜 네트워크의 빅데이터를 신속히 처리할 수 있다.
컴퓨터 시스템 운용 간에 발생하는 많은 정보들이 기록되는 로그데이터는 컴퓨터 시스템 운용 점검, 프로세스의 최적화, 사용자 최적화 맞춤형 제공 등 다방면으로 활용되고 있다. 본 논문에서는 다양한 종류의 로그데이터들 중에서 은행에서 발생하는 대용량의 로그데이터를 처리하기 위한 클라우드 환경 하에서의 MongoDB 기반 비정형 로그 처리시스템을 제안한다. 은행업무간 발생하는 대부분의 로그데이터는 고객의 업무처리 프로세스 간에 발생하며, 고객 업무 프로세스 처리에 따른 로그데이터를 수집, 저장, 분류, 분석하기 위해서는 별도로 로그데이터를 처리하는 시스템을 구축해야만 한다. 하지만 기존 컴퓨팅환경 하에서는 폭발적으로 증가하는 대용량 비정형 로그데이터 처리를 위한 유연한 스토리지 확장성 기능, 저장된 비정형 로그데이터를 분류, 분석 처리할 수 있는 기능을 구현하기가 매우 어렵다. 이에 따라 본 논문에서는 클라우드 컴퓨팅 기술을 도입하여 기존 컴퓨팅 인프라 환경의 분석 도구 및 관리체계에서 처리하기 어려웠던 비정형 로그데이터를 처리하기 위한 클라우드 환경기반의 로그데이터 처리시스템을 제안하고 구현하였다. 제안한 본 시스템은 IaaS(Infrastructure as a Service) 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하며 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함한다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 게다가, HDFS(Hadoop Distributed File System)을 도입함으로써 축적된 로그데이터를 블록단위로 복제본을 생성하여 저장관리하기 때문에 본 시스템은 시스템 장애와 같은 상황에서 시스템이 멈추지 않고 작동할 수 있는 자동복구 기능을 제공한다. 마지막으로, 본 시스템은 NoSQL 기반의 MongoDB를 이용하여 분산 데이터베이스를 구축함으로써 효율적으로 비정형로그데이터를 처리하는 기능을 제공한다. MySQL과 같은 관계형 데이터베이스는 복잡한 스키마 구조를 가지고 있기 때문에 비정형 로그데이터를 처리하기에 적합하지 않은 구조를 가지고 있다. 또한, 관계형 데이터베이스의 엄격한 스키마 구조는 장기간 데이터가 축적되거나, 데이터가 급격하게 증가할 때 저장된 데이터를 분할하여 여러 노드에 분산시키는 노드 확장이 어렵다는 문제점을 가지고 있다. NoSQL은 관계형 데이터베이스에서 제공하는 복잡한 연산을 지원하지는 않지만 데이터가 빠르게 증가할 때 노드 분산을 통한 데이터베이스 확장이 매우 용이하며 비정형 데이터를 처리하는데 매우 적합한 구조를 가지고 있는 비관계형 데이터베이스이다. NoSQL의 데이터 모델은 주로 키-값(Key-Value), 컬럼지향(Column-oriented), 문서지향(Document-Oriented)형태로 구분되며, 제안한 시스템은 스키마 구조가 자유로운 문서지향(Document-Oriented) 데이터 모델의 대표 격인 MongoDB를 도입하였다. 본 시스템에 MongoDB를 도입한 이유는 유연한 스키마 구조에 따른 비정형 로그데이터 처리의 용이성뿐만 아니라, 급격한 데이터 증가에 따른 유연한 노드 확장, 스토리지 확장을 자동적으로 수행하는 오토샤딩 (AutoSharding) 기능을 제공하기 때문이다. 본 논문에서 제안하는 시스템은 크게 로그 수집기 모듈, 로그 그래프생성 모듈, MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈로 구성되어져 있다. 로그 수집기 모듈은 각 은행에서 고객의 업무 프로세스 시작부터 종료 시점까지 발생하는 로그데이터가 클라우드 서버로 전송될 때 로그데이터 종류에 따라 데이터를 수집하고 분류하여 MongoDB 모듈과 MySQL 모듈로 분배하는 기능을 수행한다. 로그 그래프생성 모듈은 수집된 로그데이터를 분석시점, 분석종류에 따라 MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈에 의해서 분석되어진 결과를 사용자에게 웹 인터페이스 형태로 제공하는 역할을 한다. 실시간적 로그데이터분석이 필요한 로그데이터는 MySQL 모듈로 저장이 되어 로그 그래프생성 모듈을 통하여 실시간 로그데이터 정보를 제공한다. 실시간 분석이 아닌 단위시간당 누적된 로그데이터의 경우 MongoDB 모듈에 저장이 되고, 다양한 분석사항에 따라 사용자에게 그래프화해서 제공된다. MongoDB 모듈에 누적된 로그데이터는 Hadoop기반 분석모듈을 통해서 병렬 분산 처리 작업이 수행된다. 성능 평가를 위하여 로그데이터 삽입, 쿼리 성능에 대해서 MySQL만을 적용한 로그데이터 처리시스템과 제안한 시스템을 비교 평가하였으며 그 성능의 우수성을 검증하였다. 또한, MongoDB의 청크 크기별 로그데이터 삽입 성능평가를 통해 최적화된 청크 크기를 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.