• Title/Summary/Keyword: 분사 제트

Search Result 258, Processing Time 0.022 seconds

An Experimental Study on the Trajectory Characteristics of Liquid Jet with Canted Injection Angles in Crossflow (수직분사제트에서 다양한 분사각도의 분무궤적 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • The liquid column and spray trajectory have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle were varied to provide of jet operation conditions. The Pulsed Shadowgraph Photography and Planar Liquid Laser Induced Fluorescence technique was used to determine the injection characteristics in a subsonic crossflow of air. And the mainly objectives of this research was to get a empirical formula of liquid column and spray region trajectory with forward and reversed injection of air stream. As the result, This research has been shown that each trajectories were spatially dependent on air-stream velocity, fuel injection velocity, various injection angle, and normalized injector exit diameter. Furthermore, the empirical formula of liquid column trajectories has been some different of drag coefficient results between forward and reversed angled injection.

Multiphase Simulation of a Liquid Jet in a Lab-scale Ramjet Combustor (모형 램젯 연소기에서 액체제트의 다상유동 해석)

  • Oh, Jeong-Seog;Lee, Won-Nam;Lee, Jong-Geun;Santavicca, Dominique A.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.386-392
    • /
    • 2010
  • The multiphase simulation of a liquid jet in a lab-scale ramjet combustor with a plain orifice type injector was studied with a commercial CFD tool, a FLUENT program. The objectives of the current study are to analysis the breakup characteristics of a hexane liquid jet in a cross flow and to derive the correlation between flow conditions and drag force coefficients in a test section. From the result of a numerical simulation, we concluded that a DPM and Realizable $k-{\varepsilon}$ model with an enhanced wall treatment were available to simulate the multiphase flow simulation. And the calculated distribution of a hexane vapor concentration was well-matched with experimental results.

  • PDF

The Whole Region Pressure Measurement of Cavity Downstream using PSP Technique (PSP를 이용 다양한 공동 후류의 전역적 압력분포 측정)

  • Seo, Hyung-Seok;Oh, Ju-Young;Jeon, Young-Jin;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.50-57
    • /
    • 2007
  • Pressure Sensitive Paint(PSP) means a reacting paint in pressure. PSP can measure continuous pressure field by analyzing the oxygen quantity using optical method. The surface pressure of down stream after the sonic jet that injected transversely into the supersonic freestream was measured by PSP technique. Moreover the effect of various rectangular shaped cavities in front of the jet was measured by PSP technique. A comparison of the PSP results with conventional pressure tap and CFD indicates good agreement. Until now, the results of numerical analysis were compared with the discrete points such as the results of pressure tap. In this study, the whole region pressure was measured using PSP technique and its results were similar to CFD. Therefore, the flow phenonenon of cavity downstream was clearly grasped.

Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows: Cavitation and Hydraulic Flip (오리피스 내부 유동조건에 따른 수직분사제트의 분열특성에 대한 연구)

  • 안규복;김정훈;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.72-75
    • /
    • 2003
  • In this research, we focused on the effects of the orifice internal flow such as cavitation and hydraulic flip. The breakup characteristics such as the breakup length and trajectory were measured by changing the orifice diameter (d), the orifice length/orifice diameter (L/d), the injection pressure and the shapes (sharp and round) of orifice entrance to provide a lot of conditions of the orifice internal flow. It is found that cavitation bubbles that occur inside the sharp-edged orifice make the liquid jet ejecting from the orifice turbulent. In the orifices (L/d = 5), the hydraulic flip phenomenon is shown when the injection pressure is high. In case cavitation occurs it breaks up more earlier than that in case of non-cavitation. In case hydraulic flip occurs, since the area of the liquid jet becomes small, the breakup length is also small as that in case of cavitation. But the liquid column trajectories have a similar tendency irrespective of cavitation.

  • PDF

Characteristics of the Transverse Fuel Injection into a Supersonic Crossflow using Various Injector Geometries (분사구 형상에 따른 초음속 유동장 내 수직 연료 분사 특성)

  • Kim, Seihwan;Lee, Bok Jik;Jeung, In-Seuck;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.53-64
    • /
    • 2018
  • In this study, computational simulation was performed to investigate the characteristics of air/fuel mixing according to the shape of the injector exit when the transverse jet was injected into a supersonic flow. Non-reacting flow simulation was conducted with fixed mass flow rate and the same cross-sectional area. To validate the results, free stream Mach number and jet-to-crossflow memetum ratio are set to 3.38 and 1.4, respectively, which is same as the experimental condition. Further, separation region, structure of the under-expended jet, jet penetration height, and flammable region of hydrogen for five different injectors compared.

Novel Ramjet Propulsion System with H2O2-Kerosene Rocket as an Initial Accelerator (H2O2-케로신 로켓을 초기 가속장치로 갖는 새로운 램젯 추진기관)

  • Park, Geun-Hong;Lim, Ha-Young;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.491-496
    • /
    • 2008
  • New concept ramjet propulsion system with liquid bipropellant rocket using "Green Propellant" hydrogen peroxide for launch stage is proposed. In this novel concept, hydrogen peroxide gas generator produces hot oxygen at launch stage and kerosene injects to this jet in combustor. For basic study of this new concept ramjet system, investigation of auto-ignition characteristics and combustion of decomposed hydrogen peroxide and kerosene was conducted. In various test cases, auto-ignition and stable combustion was verified. The combustion temperature of 400°C and Fuel/Oxidizer mixture ratio of 0.6 were the limit of auto ignition. Through the experiment results, the possibility of novel concept combined propulsion system using hydrogen peroxide gas generator is ascertained.

A Study on Jet Characteristic using a Coanda Effect in a Constant Expansion Rate Nozzle (코안다 효과를 이용한 제트 특성에 관한 연구)

  • Lee, Dong-Won;Lee, Sak;Kim, Byung-Ji;Kwon, Soon-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.706-713
    • /
    • 2007
  • The jet structure issuing from a conventional convergent nozzle of variable expansion rate is compared with the result from the nozzle of a constant expansion rate using a normal type annular slit. In experiments, to investigate the jet characteristics between the two cases of jet, the mean velocity of nozzle exit is fixed to be 90m/s, the pressures along the jet axis and radial directions are measured by a scanning valve system moving with 3-axis auto-traverse unit, and the velocity distribution obtained by calculation from the measured static and total pressures is compared. Also to obtain the highly stable and convergence jets, it is turned out that the flow through a nozzle of constant expansion rate using the Coanda effect with an annular slit is the most preferable than that case through variable expansion rate nozzle. Furthermore, it is found that the pressure drop along the nozzle for the constant expansion rate nozzle is small relatively against to the case of variable expansion rate nozzle.

LES of breakup and atomization of a liquid jet into cross turbulent flow (비정상 난류 유동장에서 수직 분사 액주의 분열 및 기화에 관한 LES)

  • Yang, Seung-Joon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.99-102
    • /
    • 2009
  • LES(Large eddy simulation) of breakup and atomization of a liquid jet into cross turbulent flow was performed. Two phase flow between a gas phase and a liquid phase was modeled by a mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid phases respectively. The first and second breakup of liquid column was observed. The penetration depth in cross flow was comparable with experimental data for several variant of a liquid-gas momentum flux ratio by varying liquid injection velocities. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

  • PDF

An effect of design parameters f water injection slincer on the characteries of noise generated by Liquid Rocket Engine (물분사형 소음기의 설계변수가 액체로켓엔진 소음특성에 미치는 영향)

  • Park, Hee-Ho;Cho, Byung-Sun;Kim, Yoo;Ji, Pyung-Sam;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.26-26
    • /
    • 1998
  • 우주항공 산업에 대한 관심 증가에 따라 지상에서 많은 연소시험을 시행하고 있으나, 소음 발생문제에 부딪혀 어려움을 겪고 있는 실정이다. 따라서 초보적 단계이기는 하나, 액체로켓 엔진의 추력 손실을 최소화시키고 최대한 제트 소음을 크게 줄일 수 있는 소음기를 연구, 개발하고 있다. 본 연구에서는 제트소음에 대한 기초연구를 수행하여 물분사형 소음기를 설계 및 제작하였고, 물분사량과 소음기의 기하학적형상이 소음 특성에 미치는 영향을 연구하였다. 본 실험범위에서 연구의 결과는 다음과 같다. 1. 동일한 물 분사량 조건에서, 소음기 길이가 노즐출구 직경의 10배 모델 보다 30배 모델이 9dbl 정도 감음효과를 보였다. 2. 불 분사량이 증가함에 따라 소음레벨은 감소하였고, 30배 모델의 경우 불분사량이 배기가스의 10-12배 조건에서는 소음레벨을 91dbl까지 줄일 수 있었다. 3. 상기조건(소음레벨 91dbl)에 확장관을 부착함으로써, 소음레벨을 약 86dbl까지 줄일 수 있었다. 4. 본 형태의 물분사방식을 채택할 경우 고온배기가스로 인한 소음기의 파손을 방지하기 위해서 반드시 막냉각장치의 설치가 요구된다.

  • PDF

Effect of Free Stream Turbulence Intensity on Heat/Mass Transfer Characteristics Around a Film Cooling Hole (주유동의 난류강도가 막냉각홀 주위의 열/물질전달 특성에 미치는 영향)

  • 이동호;김병기;조형희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.56-63
    • /
    • 1998
  • The present study investigated local heat transfer characteristics around a film cooling hole with variations of free stream turbulence intensity The film cooling jet is injected through a single hole inclined at $30^{\cire}$ to the surface and laterally at $45^{\cire}$ for the blowing rates of 0.5, 1.0 and 2.0. Turbulence generating grids are used at upstream of the film cooling hole to change the turbulence intensity of free stream. Free stream turbulence intensity without grids is 0.5%. Two different turbulence generating grid is installed at different at locations upstream of the film cooling hole so that turbulence intensity of free stream varies from 3% to 10%. The naphthalene sublimation technique has been employed to determine local heat/ mass transfer coefficients. With low free stream turbulence intensity, heat/mass transfer augmented area by coolant or free stream is distinguished evidently. However, when free stream turbulence intensity is high, heat transfer is enhanced in all region and heat transfer enhanced regions are not clearly divided due to vigorous mixing of coolant and free stream. The peak values of heat/mass coefficients are decreased and the distributions of heat/mass transfer coefficients are more uniform with high turbulence intensity. The effect of turbulence intensity on heat transfer characteristics is more evident as blowing rate is higher.

  • PDF