• Title/Summary/Keyword: 분사유량

Search Result 269, Processing Time 0.035 seconds

Study of Flow Discharging Characteristics of Injectors at Fuel Rich Conditions (연료 과농 환경에서 분사기 유량 통과 특성 연구)

  • Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Mun-Ki;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.9-12
    • /
    • 2010
  • This paper discusses experimental data for the assessment of flow discharging characteristics of double swirl coaxial injectors operating at fuel-rich conditions. Combustion tests employing liquid oxygen and kerosene (Jet A-1) were conducted and a discharge coefficient was utilized for defining flow characteristics. A mass flow rate, a pressure, and a temperature were measured to estimate discharge coefficients. Fuel injectors revealed a fixed value of a discharge coefficient regardless of matched LOx injector design, chamber pressure, and mixture ratio. However, oxidizer injectors showed varying discharging coefficients depending on chamber pressure and mixture ratio. Flame structure variations seem to affect flow discharging characteristics of the oxidizer side.

  • PDF

Study on Flow Discharge Characteristics of Liquid Rocket Coaxial Injectors (액체로켓 동축 분사기의 유량계수에 대한 고찰)

  • Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.49-53
    • /
    • 2009
  • The paper presents the results of the experimental study about flow discharge characteristics of double swirl coaxial injectors for a liquid rocket engine. Flow discharge characteristics of injectors become one of critical design issues for LRE combustion devices. Tap water and liquid oxygen/kerosene were used for ambient and hot firing tests, respectively. A combustion discharge coefficient varies depending on a mixture ratio and a recess ratio, and magnitudes of the variations are different with respect to injector shapes and operating conditions. The variation of a combustion discharge coefficient with a LOx injector is considered to result from flame structure changes due to physical property changes.

  • PDF

Study on the Spray Characteristics of Liquid/Liquid Pintle Injector by Opening Distance (액체/액체 핀틀 분사기의 개도에 따른 분무특성 연구)

  • Yoon, Wonjae;Ahn, Jonghyeon;Ahn, Kyubok;Yoon, Hosung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.14-25
    • /
    • 2021
  • An experimental study was conducted on the spray characteristics of the pintle injector by opening distance. The discharge coefficient of the pintle injector was investigated and the spray angle was measured by taking the spray image by test conditions. As a result of the measurement of the discharge coefficient, it was confirmed that the change in the discharge coefficient of the outer injector was not significant over the experimental conditions, but the change in the discharge coefficient of the inner injector was decreased as the flow rate increased. Measurement of the spray angle showed that the change in the spray angle was not significant in the conditions under which the spray was fully developed, but the spray was not fully developed at low flow rates. This confirmed the possibility of thrust control using the pintle injector.

Spray Characteristics of Additive Manufactured Swirl Coaxial Injectors with Different Recess Lengths (적층제조 와류동축형 분사기 리세스 길이에 따른 분무특성)

  • Ahn, Jonghyeon;Lim, Ha Young;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.47-59
    • /
    • 2022
  • Four swirl coaxial injectors with different recess lengths were manufactured using an additive manufacturing method. Single-injection and bi-injection cold-flow experiments were performed using water and air as simulated propellants in an atmospheric pressure environment. According to the recess length and propellant flow conditions, the injection pressure drop and discharge coefficient were investigated, and the breakup length and spray angle were measured using an image processing technique. In the bi-injection pressure drop and discharge coefficient results, the liquid-side injector was not affected by the recess. For the gas-side injector, however, the injection pressure drop increased and the discharge coefficient decreased as the recess length increased. The breakup length in the single-injection increased with the increase of the recess, but decreased in the bi-injection.

Study on Discharge Coefficient Variations of Bi-Swirl Injectors with Working Conditions (작동 조건에 따른 이중 와류 분사기 유량 계수 변화 연구)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.177-180
    • /
    • 2010
  • It has been studied the effect of mixture ratio and chamber pressure on variations of discharge coefficients. Combustion experiments of bi-liquid swirl coaxial injectors were conducted at fuel-rich conditions with liquid oxygen and kerosene. Using two types of injectors for the experiments, characteristics of the discharge coefficient have been identified from variations in a diameter of the fuel nozzle and a momentum ratio along with the change of a LOx spray angle. It is concluded that discharge coefficients do not vary because of no change of flame structures from the fact that the fuel swirl chamber is completely filled up with fuel flow.

  • PDF

A Study of Core Water Injection Effect Influencing Plume in 75 tf $1^{st}$ Stage Liquid Propellant Rocket Engine Ground Test (75톤 1단 액체로켓엔진 지상시험에서 중앙 물분사가 후류에 미치는 영향 고찰)

  • Moon, Yoon-Wan;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.129-135
    • /
    • 2011
  • A study of efficient plume cooling by core water injection type was performed by computational fluid dynamics. A side injection type is well known, on the contrary, a core injection type is not well known. In order to figure out the characteristics of core injection type, several calculations were performed by computational fluid dynamics along various mass flow rates and locations of water injection. On the basis of analysis it was the adequate cooling condition that water mass flow rate to total mass flow rate was two times at least and location of water injections was L/De=1.2.

Flow Characteristics of Swirl-Coaxial Injectors Using ANSYS FLUENT (ANSYS FLUENT를 이용한 동축 와류형 분사기 유동특성 연구)

  • Lee, Bom;Yoon, Wonjae;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.699-703
    • /
    • 2017
  • Numerical simulations of closed-type and open-type single injectors were conducted to investigate the flow characteristics of a swirl-coaxial injector used in a liquid rocket engine. Numerical analysis was conducted using a commercial program ANSYS FLUENT. The injectors has three models with different recess length. Numerical analysis was conducted to investigate the variation of the flow characteristics of the injector when the flow condition were changed. It was also compare and analyzed with experimental results. The results obtained from the numerical simulation show that the difference between the inlet pressure and the discharge coefficient is not significant.

  • PDF

Discharge Coefficient Characteristics in Hot-firing Tests of a Subscale Gas Generator (축소형 가스발생기 연소시험에서의 유량계수 특성)

  • Kim, Mun-Ki;Lim, Byoung-Jik;Kang, Dong-Hyuk;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.73-76
    • /
    • 2011
  • The hot-firing tests of a subscale gas generator were successfully performed to investigate the effect of injector shape variation on discharge coefficients. The test results showed that discharge coefficients of fuel and liquid oxygen injectors remained nearly constant irrespective of variations of a mixture ratio and a chamber pressure. Especially, the discharge coefficient of the liquid oxygen injector was largely increased compared to the previous works.

  • PDF

Characteristics of Unielement Injector Combustion with Flow rates and Chamber Pressures (유량 및 연소압에 따른 액체로켓 단위분사기 연소특성 변화)

  • Moon Il-Yoon;Kim Jong-Gyu;Han Yeoung-Min;Yoo Jin;Lee Yang-Seok;Ko Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.247-250
    • /
    • 2005
  • In the case of appling a unielement injector developed for a full scale liquid rocket combustor, a operating condition or configuration of the injector is changed by combustion pressure, arrangement and injector quantity of a full scale liquid rocket combustor. In order to verify application, swirl coaxial injectors propelled by jet-A1 and liquid oxygen are tested at different conditions of a combustion pressure, a flowrate and an injector length. As a test result, the application of the present swirl coaxial injectors is excellent because an efficiency of a characteristic velocity is increased at the each test condition beyond that variation of dynamic pressure intensity is small.

  • PDF

A Study of Design of $H_2O_2$/Kerosene Ignition Injector and Spray Characteristics (과산화수소/케로신 점화용 분사기 설계 및 분무특성에 관한 연구)

  • Kim, Bo-Yeon;Hwang, Oh-Sik;Lee, Yang-Suk;Ko, Young-Seong;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.37-40
    • /
    • 2009
  • This study was performed to design of $H_2O_2$/Kerosene catalyst ignition injector and cold flow test to measure the mass flow rate and spray angle. Mass flow rate and spray angle were measured by designed injector through cold flow test. Result of test kerosene mass flow rate was measured 12.88 g/s and 40 deg of spray angle at pressure drop 3 bar as same as design point. And hydrogen peroxide was measured 94.39 g/s at pressure drop 1 bar smaller than design point.

  • PDF