• Title/Summary/Keyword: 분사시스템

Search Result 482, Processing Time 0.029 seconds

Cycle Simulation for the Performance Prediction of a High Pressure Unit Injection System of a Diesel Engine (디젤엔진용 고압분사 유닛인젝터의 성능예측을 위한 사이클 시뮬레이션)

  • 김철호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.63-74
    • /
    • 2001
  • In this study, a cycle simulation program of a Unit-Injection(UI) system was developed to estimate the injection performance of newly designed injection system. A fundamental theory of the simulation program is based on the conservation law of mass. Loss of fuel mass in the system due to leakage, compressibility effect of the liquid fuel and friction loss in the control volume was considered in the algorithm f the program. For the evaluation of the simulation program developed, the experimental result which was offered by the Technical Research Center of Doowon Precision Industry Co. was incorporated. Two main parameters; the maximum pressure in the plunger chamber and total fuel mass(kg) injected into the engine cylinder per cycle, were measured and compared with the simulation results. It was found that the maximum error rate of the simulation result to the experimental output was less than 3% in the rated rotational speed (rpm) range of the plunger cam.

  • PDF

A Study of Performance Test of High Speed Solenoid for Fuel Injector in Diesel Engine (디젤기관의 분사밸브를 위한 고속 솔레노이드의 성능에 관한 연구)

  • Cho, K.H.;Rha, J.H.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.11-16
    • /
    • 2001
  • In the DI diesel engine of passenger cars, common rail injection system have been used to improve the engine performance and reduce the exhaust emission by controlling injection timing, injection pattern, and injection duration. In case that common rail injection system is applied to high speed DI diesel engine, it is necessary to have high response and good repetition characteristics. These characteristics of injector depend on the characteristics of solenoid. Thus, to apply the common rail injection system in the high speed diesel engine, we had designed and made a multi-pole solenoid, and carried out repetition, response test to compare the multi-pole solenoid with the gasoline Injector solenoid. The result shows that repetition and response characteristics of multi-pole solenoid have better characteristics than the gasoline injector solenoid.

  • PDF

Study on Simulation of Fuel Injection Nozzle for Marine Medium Speed Diesel Engine (선박용 중속디젤엔진 연료분사노즐 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-47
    • /
    • 2013
  • This study was carried out to improve the design of fuel injection nozzle for marine medium speed diesel engine. For this purpose, fuel injection nozzle was modeled and simulated using CATIA V5R19 and FLUENT & MSC Nastran. Analyses of flow and heat transfer, respectively, were performed to find the optimal design of fuel injection nozzle. As the results, big pressure drop, which may lead to cavitation damage, was occurred at inlet of fuel injection hole with diameter 0.3mm. Furthermore, it was confirmed that the increase of mean temperature of fuel injection nozzle was almost a half in comparison with that of fuel injection nozzle tip.

Spray Characteristics of the Rotating Fuel Injection System (회전연료 분사시스템의 분무특성)

  • Lee, D.H.;Park, J.B.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.81-88
    • /
    • 2006
  • The spray characteristics of the rotating fuel injection system were investigated. The special test rig was devised to get the spatial and momentary droplet information. This experimental apparatus consists of a high-speed motor, a shaft, a rotating fuel nozzle and an acrylic case. Spray droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and instantaneous velocity field was measured by 1'IV (Particle Image Velocimetry) system. At the same time, spray visualization was performed by using ND-YAG laser-based flash photography. From these two different laser diagnostic techniques, we could get spatial and instantaneous spray information fur rotating fuel injection system. The results presented in this paper indicate that spray characteristics such as droplet size, velocity and spray pattern were strongly influenced by rotational speed.

  • PDF

PDMS Microlens Fabrication by Electrohydrodynamic Atomization (전기유체분사를 이용한 PDMS 마이크로렌즈 제작)

  • Kang, Tae-Ho;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1478-1479
    • /
    • 2008
  • 본 논문에서는 PDMS 프레폴리머의 전기유체분사를 이용하여 마이크로렌즈를 제작했다. 전기유체분사 시스템에서 인가전압과 기판 온도의 두 가지 변수를 변화시키면서 제작한 PDMS 마이크로렌즈의 특징을 파악하였으며, 인가전압이 증가함에 따라 마이크로렌즈의 직경이 작아지고, 기판 온도가 증가함에 따라 마이크로렌즈의 직경이 작아지고 접촉각이 커지는 것을 확인하였다. 제작된 PDMS 마이크로렌즈의 특성을 평가하기 위하여 가우시안 빔 투과 실험을 하였다. 측정된 초점거리는 계산된 초점거리와 5 mm 차이가 났으며, 렌즈를 투과된 가우시안 빔은 초점에서 최대의 파워밀도와 최소의 유효반경을 가지는 것으로 측정되었다.

  • PDF

Analysis Model Development for Component Design of the Fuel Injection System for CRDI Engines (커먼레일용 연료 분사시스템의 부품 설계를 위한 해석 모델 개발)

  • Jang, Joo-Sup;Yoon, Young-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.117-126
    • /
    • 2009
  • A Common-Rail Direct Injection(CRDI) system for high speed diesel engines was developed to meet reductions of noise and vibration, and emission regulations. In this study, CRDI system analysis model which includes fuel and mechanical sub-systems was developed using commercial software, AMESim in order to predict characteristics for various fuel injection components. Each component which constructs system was modeled and verified by sub-model of AMESim obtained characteristics curves of each components. The parameter sensitivity analysis such as throttle size, injection rate, plunger displacement, supply pressure of fuel injection for system design were carried out by the analysis.

An Experimental Study on Electronic Injection System for Pollutant Reduction in a DI Diesel Engine (직접분사식 디젤엔진에서의 공해저감을 위한 전자분사 시스템에 관한 실험적 연구)

  • ;;;;Ale
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 1997
  • The pump-pipe-injector system is that most commonly used type of injection equipment for diesel engines. In this study, a new electromagnetic fuel injection system was designed and carried out the experiment of single cylinder direct injection(DI) diesel engine. This system do not need the cam shaft for fuel injection. The effects of the injection timing on the combustion process and emission were investigated. The results are that 1) atomization was improved, 2) combustion pressure was increased and ignition delay became shorter than before, 3) Low smoke level guarantee with more advanced injection timing without abnormal combustion but NOX concentration was increased as the injection time advanced.

  • PDF

Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (I) (커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교 (I) - 실제 직접분사식 디젤엔진에서의 사전분사 특성 분석 -)

  • Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for driving the injector.

Study on Simulation of Fuel Injection Pump for Marine Medium Diesel Engine (선박 중형디젤엔진용 연료분사펌프 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.123-129
    • /
    • 2012
  • This study was carried out to improve the design of fuel injection pump for marine medium diesel engine. For this purpose, all parts of fuel injection pump were modeled and simulated using CATIA V5R19, FLUENT & MSC Nastran. Flow analysis for plunger cylinder and structural analysis for plunger, roller and spring, which were considered as essential parts of fuel injection pump, were performed to find the optimal design of fuel injection pump. As the results, flow of fluid in plunger cylinder was showed good results in case of 7.7~8.0m/s of plunger velocity. Furthermore, it was confirmed that plunger, roller and spring could be operated safely under 1,800bar pressure.

Engine Performance and Combustion Characteristics on The Variation of Injection Characteristics in Diesel Engine with Common Rail System (디젤엔진에서 Common-rail 시스템의 분사방법에 따른 기관성능 및 연소특성에 관한 실험적 연구)

  • 백두성;오상기;한영출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.52-57
    • /
    • 2003
  • Common rail injection system is flexible in injection timing, injection duration and pressure in engine. Many researches have reported on the merits in the application of common rail systems. This research investigated on characteristics and performance for single cylinder diesel engine with a common .ail injection system by varying major parameters such as injection timing, injection duration and common rail pressure. The injection timing and injection duration were controlled by electronic pulse generated. and common rail pressure were controlled by PCV driver. The 498cc single cylinder diesel engine was used in this experiment. All data for combustion pressure, injection timing and injection duration were recorded by Labview. Furthermore, this test was focused on how to optimize injection conditions.