• Title/Summary/Keyword: 분별결정작용

Search Result 45, Processing Time 0.021 seconds

Reversely Zoned Compositional Variations and their Origins of the Andong Pluton, Andong Batholith, Korea (안동심성암체의 역누대 초성변화와 그 성인)

  • 황상구;이보현
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.75-95
    • /
    • 2002
  • The Andong pluton in the Andong Batholith is composed of comagmatic plutonic rocks, in which the lithofacies comprise hornblende biotite tonalite in the central paft biotite granodiorite in the marginal paft and porphyritic biotite granite at the topside (noJthea~tern paft) of the pluton. The pluton is petrographically and petrochemically zoned, having more mafic center than margin and topside. Distribution pallern of the lithofacies represents a reverse zoning in the pluton. Modal and chemical data in the pluton show progressive and gradual compositional variations from the centrer via the margin to the topside. Quartz and K-teldspar increase toward the topside of the pluton, whereas hornblende, biotite and color index increase toward the center. The bulk composition in the pluton is also reversely zoned, with high $Si0_2$ and $K_{2}O$ in the topside facies, and high MnO, CaO, $Ti0_2$, $Fe_{2}O_{3}$t, MgO and $P_{2}O_{5}$ in the central facies. The reverse zoning is also evident in higher Cr. V, Ni, Sc and Sr of the more mafic tonalite in the interior. The reversely zoned pluton results from remobilization (resurgence) of the lower more mafic compositional zone into the upper more felsic zones of the pluton modified by thennogravitational diffusion and fractional crystallization. In the initial stages of evolution, the pluton was a petrochemical system that fonned chemical compositional zonation with mafic tonalitic magma in the lower. granodioritic one in the middle and granitic one in the upper paft of the magma chamber. Periodic influxes of more mafic magma from the ba~e resulted in mingling of liquids and redistribution of minerals, and may have triggered the remobilil.ation of the lower compositional zone into the upper more felsic zones.

Magmatic evolution of igneous rocks related with the Samrangjin caldera, southeastern Korea (삼랑진 칼데라에 관련된 화성암류의 마그마 진화)

  • 황상구;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.161-176
    • /
    • 1998
  • There are exposed Samrangjin Tuff and intracaldera intrusions, of which rhyolitic rocks emplaced as postcollapsed central and ring intrusions within the Samrangjin caldera, and fine-grained granodiorite and biotite granite as regional tectonic intrusions nearby. The Samrangjin Tuff and the rhyolitic rocks are of a single Samrangjin magmatic system. Flow-banded rhyolite among rhyolitic rocks was emplaced in the outer part of the ring intrusions, rhyodacite in the inner part of the eastern ring, and porphyritic dacite and dacite porphyry in the inner part of the northwestern ring. Totally the Samrangjin Tuff and the rhyolitic rocks range from rhyolite to dacite in chemical composition. The Rb-Sr isotopic data of the Samrangjin Tuff and the rhyolitic rocks yield an age of $80.8{\pm}1.5(2{\sigma})$ Ma with the initial $^{87}Sr/^{86}Sr$ ratio of $0.70521{\pm}0.00010(2{\sigma})$. The continuous compositional zonations generally define a large stratified magma system in the postcollapse magma chamber. The Sr isotopic data suggest that the compositional zonations might have resulted from the fractional crystallization of a parental dacitic magma.

  • PDF

Petrotectonic Setting and Petrogenesis of Cretaceous Igneous Rocks in the Cheolwon Basin, Korea (철원분지 백악기 화성암류의 암석조구조적 위치와 암석성인)

  • Hwang, Sang-Koo;Kim, Se-Hyeon;Hwang, Jae-Ha;Kee, Won-Seo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.67-87
    • /
    • 2010
  • This article deal with petrotectonic setting and petrogenesis from petrography and chemical analyses of the Cretaceous volcanic and intrusive rocks in the Cheolwon basin. The volcanic rocks are composed of basalts in Gungpyeong Formation, Geumhaksan Andesite, and rhyolitic rocks (Dongmakgol Tuff, Rhyolite and Jijangbong Tuff), and intrusive rocks, Bojangsan Andesite, granite porphyry and dikes. According to petrochemistry, these rocks represent medium-K to high-K basalt, andesite and rhyolite series that belong to calc-alkaline series, and generally show linear compositional variations of major and trace elements with increase in $SiO_2$ contents, on many Harker diagrams. The incompatible and rare earth elements are characterized by high enrichments than MORB, and gradually high LREE/HREE fractionation and sharp Eu negative anomaly with late strata, on spider diagram and REE pattern. Some trace elements exhibit a continental arc of various volcanic arcs or orogenic suites among destructive plate margins on tectonic discriminant diagrams. These petrochemical data suggest that the basalts may have originated from basaltic calc-alkaline magma of continental arc that produced from a partial melt of upper mantle by supplying some aqueous fluids from a oceanic crust slab under the subduction environment. The andesites and rhyolites may have been evolved from the basaltic magma with fractional crystallization with contamination of some crustal materials. Each volcanic rock may have been respectively erupted from the chamber that differentiated magmas rose sequentially into shallower levels equivalenced at their densities.

Formation Process and Its Mechanism of the Sancheong Anorthosite Complex, Korea (산청 회장암복합체의 형성과정과 그 메커니즘)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.431-449
    • /
    • 2015
  • The study area is located in the western part of the Precambrian stock type of Sancheong anorthosite complex, the Jirisan province of the Yeongnam massif, in the southern part of the Korean Peninsula. We perform a detailed field geological investigation on the Sancheong anorthosite complex, and report the characteristics of lithofacies, occurrences, foliations, and research formation process and its mechanism of the Sancheong anorthosite complex. The Sancheong anorthosite complex is classified into massive and foliation types of Sancheong anorthosite (SA), Fe-Ti ore body (FTO), and mafic granulite (MG). Foliations are developed in the Sancheong anorthosite complex except the massif type of SA. The foliation type of SA, FTO, MG foliations are magmatic foliations which were formed in a not fully congealed state of SA from a result of the flow of FTO and MG melts and the kinematic interaction of SA blocks, and were continuously produced in the comagmatic differentiation. The Sancheong anorthosite complex is formed as the following sequence: the massive type of SA (a primary fractional crystallization of parental magmas under high pressure)${\rightarrow}$ the foliation type of SA [a secondary fractional crystallization of the plagioclase-rich crystal mushes (anorthositic magmas) primarily differentiated from parental magmas under low pressure]${\rightarrow}$the FTO (an injection by filter pressing of the residual mafic magmas in the last differentiation stage of anorthositic magmas into the not fully congealed SA)${\rightarrow}$the MG (a solidification of the finally residual mafic magmas). It indicates that the massive and foliation types of SA, the FTO, and the MG were not formed from the intrusion and differentiation of magmas which were different from each other in genesis and age but from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma.

The Basalts and Volcanic Process in the Seondol Cinder Cone, Seobjikoji Area, Jeju Island (제주도 섭지코지 선돌 분석구의 화산작용과 현무암)

  • Koh, Jeong-Seon;Yun, Sung-Hyo;Kim, Suck-Youn
    • Journal of the Korean earth science society
    • /
    • v.28 no.4
    • /
    • pp.462-477
    • /
    • 2007
  • The purpose of this study is to determine the petrology of basalt and the volcanic process in the Seondol cinder cone, Seobjikoji area, eastern Jeju Island. The Seondol cinder cone is mainly composed of spatters in the lower part, pyroclastic deposits including reddish brown blocks, ashes with volcanic bombs in the middle part, and dark black scoria deposits in the upper part. The volcanic sequences suggest volcanic processes that progress through Strombolian eruption and end with Hawaiian lava effusion which breached the cinder cone northwestward and extended over northwestward as lava delta and basalt emplaced as a volcanic neck in the central part of crater in the cinder cone. The age of basalt lava flows is about $95\;{\pm}\;3\;ka$. The basalts belong to transitional basalt and show products of fractional crystallization of clinopyroxene and olivine from a parental basalt magma on the basis of variation diagram of major, trace and rare earth elements. Basalts in the region of this study are plotted at the region of within plate basalt.

Petrology of the Cretaceous Volcanic Rocks in Yeongdo island, Busan (부산 영도 일대의 백악기 화산암류에 대한 암석학적 연구)

  • Kim, Dohyoung;Yun, Sung-Hyo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.293-311
    • /
    • 2021
  • The volcanic rocks that make up Yeongdo island, an administrative district located on the southern coast of Busan, are composed of andesitic and rhyolitic rocks. Andesitic rock is mainly composed of volcanic breccia has a phenorysts of plagioclase and contains rock fragments. The rhyolitic rock is composed of volcanic angular rock at the base of Mt. Bongnae, and welded tuff forms the main mass of Mt. Bongnae. The fiamme structure can be easily observed with the naked eye, and the higher the altitude, the weaker the welded structure develops and the less the amount of rock fragments and crystals constituting the welded tuff. It is indicated that the magma that formed this study area is related to the tectonic environment of the continental margin related to subduction, and that it erupted after undergoing fractional cystallization at the same time with some contaminant in the continental crust. As a result of analyzing the main elements by altitude, it is believed to be the result of mixing at least 4 times or more of magma batches.

Geochemical Characteristics of the Quaternary Jungok Basalt in Choogaryong Rift Valley, Mid-Korean Peninsula (추가령 열곡대에 분포하는 전곡현무암의 지화학적 특성)

  • Wee, Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.171-182
    • /
    • 1996
  • Quaternary Jungok basalts are distributed along the old Hantan river in Mid-Korean Peninsula. They were flowed out from Mt. Ori and Upland (680 m), and they formed narrow and long basalt plateau showing the layers of 10 to 20 meters in thickness and about 95 km in length. Fifty seven samples were collected from the study area, and sixteen rock samples were selected and analysed for major and trace elements. The analyzed samples have alkalic composition and show a relatively restricted variation in major element chemistry (except MgO), as comparing to the that of trace element. Based on major element chemistry, a quantitative modelling of fractional crystallization by multiple linear regression method suggests that the chemical evolution of the evolved rocks can be generated by fractionation of olivine, plagioc1ase, clinopyroxene, and magnetite in proportion of 56 : 25 : 17 : 2, respectively. The calculated trace element abundances by mineral proportions estimated from major element modelling, however, underestimate the incompatible element concentrations in the evolved rocks. According to the incompatible element abundances, simple fractional crystallization process has difficulty to explain the chemical variation of the evolved rocks. It seems that the other processes, which enrichment of incompatible elements can occure without concomitant changes in major element compositions, are needed in order to explain the chemical variation of the Jungok basalts. Thus, the major elements and compatible trace elements variations of the Jungok basalts are due to fractional crystallization, but the incompatible elements variation is due to fractional crystallization superimposed on already varying concentrations caused by slightly different degrees of melting of the same source, and/or due to periodic replenishment, tapping and fractionation(RTF) processes.

  • PDF

Phlogopite-Bearing Orthopyroxenite in Andong Ultramafic Complex (안동 초염기성암 복합체의 함금운모 사방휘석암)

  • Jeong, Gi Young;Lee, Seung Ryeol;Kwon, Seok-Ki
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.249-261
    • /
    • 2012
  • Phlogopite-bearing orthopyroxenite occurs in Andong ultramafic complex in a planar body of about 1 meter thick, and consists mostly of coarse subhedral to euhedral orthopyroxene crystals. Minor minerals are clinopyroxene, phlogopite, and plagioclase with trace chromian spinel, pentlandite, apatite, and zircon. Clinopyroxene occurs as either exolution lamella or interstitial fillings with phlogopite and plagioclase. Electron microprobe analysis showed that orthopyroxenes are entatite, while clinopyroxenes are diopside with little chemical variation through samples. Hydrous alteration resulted in the formation of talc, amphibole, and serpentine from orthopyroxene, clinopyroxene, and plagioclase, respectively. The orthopyroxenite was probably formed by the fractional crystallization of the ultramafic magma. Radiogenic dating of phlogopite and zircon of the orthopyroxenite would reveal the age of the Andong ultramafic complex.

Rb-Sr Whole-rock Isochron Age and Petrology of the Mt. Geumjeong Granite, Busan (부산 금정산화강암체의 암석학 및 Rb-Sr 전암 등시선 연대)

  • Yun Sung-Hyo;Koh Jeong-Seon;Park Kwang-Sun;Ahn Hyo-Chan;Kim Young-Il;Yoo Sung-Hyeon;Lee Dong-Han;Yun Gi-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.61-72
    • /
    • 2005
  • The granitoids in the Mt. Geumjeong, Busan can be divided into granodiorite, hornblende granite, adamellite, tonalite, biotite granite and micrographic granite. The geochemical characteristics of the Mt. Geumjeong granites indicate that they were crystallized from a calc-alkaline series and that they belong to Ⅰ-type granitic rocks which evolved from granodioritic magma into hornblende granite, adamellite, biotitie granite, and finally micrographic granite through fractional crystallization of plagioclase. The crystallization pressures and temperatures of the minimum melt compositions of the granitic rocks were estimated to about 1∼5 kbar and 720∼700℃. The trace element composition and REE patterns, characterized by a high LILE/HFSE ratio and enrichments in LREE, indicate typical continental margin arc calc-alkaline rocks produced in the subduction environment. The Rb-Sr isotopic data for the Mt. Geumjeong granites define a well-defined isochron yielding as age of 69.6±1.9 Ma with an initial Sr isotopic ratio of 0.70503.

A Study on Object Tracking Using Cluster Collaboration and Object Association (클러스터 협업 체계 및 객체 관계를 이용한 객체 추적 연구)

  • Kim, Jin-Ah;Moon, Nammee;Hong, SangJin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.142-145
    • /
    • 2016
  • 본 논문은 기존의 RFID 감지 시스템에서 더 나아가 다수의 RFID 클러스터의 협업 및 RFID가 부착된 객체들 사이의 관계를 통하여 객체 추적이 가능한 시스템을 제안한다. 서버는 다수 클러스터와의 통신으로 모든 객체의 데이터를 관리하며 클러스터는 객체의 RFID가 감지되는 경우에 객체의 데이터를 얻어 서버에 전송한다. 이러한 서버와 클러스터의 상호작용을 통해 감지된 클러스터의 위치를 파악하여 객체 추적이 가능하다. 만약 RFID를 감지하는 데 있어 문제가 발생할 경우, 객체 관계를 활용하여 해결한다. 얻은 데이터의 신뢰도가 낮더라도 RFID가 감지된 상황에 따라 가진 데이터를 기반으로 객체는 싱글과 그룹 관계로 결정되며 시간이 지남에 따라 그룹 관계를 싱글 관계로 바꾸어 모든 객체를 분별할 수 있도록 한다. 실제 제한된 실내 공간을 선정해 이를 기반으로 시뮬레이션 프로그램을 구현하여 이 시스템의 효율성을 확인하였다.