• Title/Summary/Keyword: 분무 열분해

Search Result 130, Processing Time 0.022 seconds

Magnetic Properties of Sr-ferrite Powders via Modified Low Temperature Co-spray Roasting Process (저온 분무 열분해법으로 제조된 Sr-ferrite의 자기특성)

  • 김효준;조태식;남효덕;양충진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.931-939
    • /
    • 1998
  • Preparation of the hexagonal Sr-ferrite powsers with high performance by co-spraying precusor of the FeCl$_2$+SrCO$_3$ at a low temperature was proved as a cost =-effective method. The co-spray roasting was carried out in the temperature range of 300~$700^{\circ}C$ after SrCO$_3$ powders were mixed into 12FeCi$_2$.4$H_2O$ liquor. By this low temperature roasting method fine particles of multi-phased FeO$_2$+SrCO$_3$ were formulated. Powders calcined at 105$0^{\circ}C$ for 1 hour show the best magnetic property of M\ulcorner=69.96 emu/g, M\ulcorner=36.98 emu/g, and \ulcornerH\ulcorner=4.31 Oe. This calcining temperature is lower than that of the conventional dry method by 10$0^{\circ}C$.

  • PDF

Synthesis of Pb(Mg1/3Nb2/3)O3 by Solution Method (용액법을 이용한 Pb(Mg1/3Nb2/3)O3의 합성)

  • 김복희;문지원
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.185-217
    • /
    • 1996
  • Pb(Mg1/3Nb2/3)O3은 높은 유전율과 전기저항 및 유전율의 온도변화율이 적은 Pb계 relaxor의 대표적인 재료로서 적층 세라믹 콘덴서 재료에의 응용이 크게 기대되고 있다. 그러나 산화물 분말을 이용하는 일반적인 세라믹스 합성방법으로는 Pb(Mg1/3Nb2/3)O3의 단일상의 합성이 어렵고, 합성과정에서 저유전율상인 pyrochlore상이 합성이 어렵고, 합성과정에서 저유전율상인 pyrochlore상이 공존하여 Pb(Mg1/3Nb2/3)O3의 전기적 특성을 저하시킨다. 본연구에서는 용액을 이용하여 Pb(Mg1/3Nb2/3)O3의 단일상을 합성하고자 하였다. 출발물질로는 값싼 금속염인 Niobium Oxalate, magnesium Nitrate 및 Lead Nitrate를 선정하고 증류수에 용해하여 혼합용액을 제좋고, 합성방법으로는 초음파 분무 열분해법과 에멀젼법을 이용하였다. 초음파 분무 열분해법에서는 75$0^{\circ}C$에서 합성한 분말을 다시 75$0^{\circ}C$에서 하소하여 Pb(Mg1/3Nb2/3)O3 단일상을 합성할 수 있었으며, 에멀젼법에서는 80$0^{\circ}C$에서 Pb(Mg1/3Nb2/3)O3 단일상을 합성할 수 있었다.

  • PDF

Decomposition of Eco-friendly Liquid Propellants over Platinum/Hexaaluminate Pellet Catalysts (백금/헥사알루미네이트 펠렛 촉매를 이용한 친환경 액체 추진제 분해)

  • Jo, Hyeonmin;You, Dalsan;Kim, Munjeong;Woo, Jaegyu;Jung, Kyeong Youl;Jo, Young Min;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.371-379
    • /
    • 2018
  • The objective of this study is to develop a platinum/hexaaluminate pellet catalyst for the decomposition of eco-friendly liquid propellant. Pellet catalysts using hexaaluminate prepared by ultrasonic spray pyrolysis as a support and platinum as an active metal were prepared by two methods. In the case of the pellet catalyst formed by loading the platinum precursor onto the hexaaluminate powder and then adding the binder (M1 method catalyst), the mesopores were well developed in the catalyst after calcination at $550^{\circ}C$. However, when this catalyst was calcined at $1,200^{\circ}C$, the mesopores almost collapsed and only a few macropores existed. On the other hand, in the case of a catalyst in which platinum was supported on pellets after the pellet was produced by extrusion of hexaaluminate (M2 method catalyst), the surface area and the mesopores were well maintained even after calcination at $1,200^{\circ}C$. Also, the catalyst prepared by the M2 method showed better heat resistance in terms of platinum dispersion. The effects of preparation method and calcination temperature of Pt/hexaaluminate pellet catalysts on the decomposition of liquid propellant composed mainly of ammonium dinitramide (ADN) or hydroxyl ammonium nitrate (HAN) were investigated. It was confirmed that the decomposition onset temperature during the decomposition of ADN- or HAN- based liquid propellant could be reduced significantly by using Pt/hexaaluminate pellet catalysts. Especially, in the case of the catalyst prepared by the M2 method, the decomposition onset temperature did not show a large change even when the calcination temperature was raised at $1,200^{\circ}C$. Therefore, it was confirmed that Pt/ hexaaluminate pellet catalyst prepared by M2 method has heat resistance and potential as a catalyst for the decomposition of the eco-friendly liquid propellants.

Synthesis of porous-structured (Ni,Co)Se2-CNT microsphere and its electrochemical properties as anode for sodium-ion batteries (다공성 구조를 갖는 (Ni,Co)Se2-CNT microsphere의 합성과 소듐 이차전지 음극활물질로서의 전기화학적 특성 연구)

  • Yeong Beom Kim;Gi Dae Park
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.178-184
    • /
    • 2023
  • Transition metal chalcogenides have garnered significant attention as anode materials for sodium-ion batteries due to their high theoretical capacity. Nevertheless, their practical application is impeded by their limited lifespan resulting from substantial volume expansion during cycling and their low electrical conductivity. To tackle these issues, this study devised a solution by synthesizing a nanostructured anode material composed of porous CNT (carbon nanotube) spheres and (Ni,Co)Se2 nanocrystals. By employing spray pyrolysis and subsequent heat treatments, a porous-structured (Ni,Co)Se2-CNT composite microsphere was successfully synthesized, and its electrochemical properties as an anode for sodium-ion batteries were evaluated. The synthesized (Ni,Co)Se2-CNT microsphere possesses a porous structure due to the nanovoids that formed as a result of the decomposition of the polystyrene (PS) nanobeads during spray pyrolysis. This porous structure can effectively accommodate the volume expansion that occurs during repeated cycling, while the CNT scaffold enhances electronic conductivity. Consequently, the (Ni,Co)Se2-CNT anode exhibited an initial discharge capacity of 698 mA h g-1 and maintained a high discharge capacity of 400 mA h g-1 after 100 cycles at a current density of 0.2 A g-1.

Spferical fine ZnO Particles prepared from zinc nitrate by Ultrasonic Spray Pyrolysis technique (초음파 분무 열분해법에 의해 질산아연용액으로부터 구형의 ZnO 미분말 제조)

  • 이서영;김영도;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.2
    • /
    • pp.46-58
    • /
    • 1991
  • The synthesized ZnO powder was prepared by spray pyrolysis method using ultrasonic vibrator. The starting solutons were the aqueous solution of $Zn(NO_3)_2\cdot6H_2O$. The concentration was prepared 1M, O.5M, O.25M, and O.lM. The Nz carrier gas was 2.3cm$\cdot{sec}^{-1}$. The prepared powder from the $Zn(NO_3)_2{\cdot}6H_2O$ aqueous solution was Zine oxide with hexagonal structure. The shape of prepared powder was fine size, narrow size distribution, agglomerate-free, nearly sphere particle. Also, the particle size was about $ 0.28-0.61\mum$.

  • PDF

Synthesis and Luminescence Enhancement of Strontium Aluminate Green Phosphor via Spray Pyrolysis (분무열분해 공정을 이용하여 스트론튬 알루미네이트 녹색 형광체의 합성 및 발광 특성 개선)

  • Kim, Mi Na;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.594-599
    • /
    • 2011
  • $SrAl_2O_4:Eu$ green phosphor was prepared by spray pyrolysis and its luminescence properties were controlled by replacing the Al sites with boron and using organic modifier or drying control chemical additive. It was clear that the substitution of B into the Al sites was helpful to obtain pure monoclinic $SrAl_2O_4$ phase and greatly enhance the emission intensity. In terms of the emission intensity, the optimal content of boron was about 1 at% with respect to the aluminum element. The luminescence intensity of $Sr_{0.9}Al_{1.98}B_{0.02}O_4:Eu_{0.1}$ phosphor could be improved by the use of 0.2 M organic additives in the spray solution. Futhermore, using 0.5 M dimethylformamide(DMF) as a drying control chemical with organic additives made it possible to improve about 172% the emission intensity of $Sr_{0.9}Al_{1.98}B_{0.02}O_4:Eu_{0.1}$ phosphor. According to XRD analysis, the organic additive and DMF used enhanced the crystallinity without any change in the crystal phase. When used only the organic additive without DMF, the surface area of the prepared $Sr_{0.9}Al_{1.98}B_{0.02}O_4:Eu_{0.1}$ phosphor became enlarged. The use of DMF with the organic additive resulted in significant reduction in the surface area. It was concluded that the increase of the crystallinity as well as the reduction of surface area mainly contribute to the improvement in the luminescence intensity of $Sr_{0.9}Al_{1.98}B_{0.02}O_4:Eu_{0.1}$ phosphor prepared using DMF and organic additives.

Preparation of Mesoporous and Spherical-shaped Silica Particles by Spray Pyrolysis (분무열분해 공정을 이용한 메조기공을 가지는 실리카 구형입자의 제조)

  • Baek, Chul-Min;Jung, Kyeong Youl;Park, Kyun Young;Park, Seung Bin;Cho, Sung Baek
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.880-885
    • /
    • 2008
  • Spray pyrolysis was applied to prepare spherical silica particles with mesopores of a regular structure. The physical properties such as surface area, pore size, pore structure, particle size, and morphology were studied by BET, SEM, SAXS, and DLS analysis. At a fixed gas flow rate, the BET surface area changed from 200 to $1,290m^2/g$ as changing the CTAB/TEOS molar ratio from 0.05 to 0.3. At a fixed CTAB/TEOS ratio, the surface area of silica particles was varied from 1,062 to $1,305m^2/g$ with changing the gas flow rate from 10 to 40 l/min. The average pore size measured by BJH desorption was about $21{\sim}23{\AA}$ and not significantly influenced by the CTAB/TEOS ratio and the gas flow rate. Finally, the highest surface area which was $1,305m^2/g$ were obtained when the CTAB/TEOS ratio and the gas flow rate were 0.2 and 20 l/min, respectively. According to SAXS analysis, the prepared silica particles showed a strong peak at $2{\theta}=2.6^{\circ}$ and two minor peaks around $2{\theta}=4.4^{\circ}$ and $5.1^{\circ}$, which are due to regular mesopores of hexagonal structure. The morphology of silica particles prepared were spherical shape and the average particle size was $1.0{\mu}m$.

Synthesis and Characterization of Titania-Partially-Stabilized Zirconia by Ultrasonic Spray Pyrolysis (초음파분무열분해법에 의한 TPSZ의 합성 및 특성)

  • Seo, Ki-Lyong;Ri, Chang-Seop
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.592-599
    • /
    • 2000
  • The fine particles of binary ceramic composite of titania-partially-stabilized zirconia(TPSZ) were synthesized by ultrasonic spray pyrolysis at the various temperatures, compositions and concentrations and the effects of process factors for synthesis on the characteristics of fine particles were discussed. The starting salt solutions were prepared to have the ionic concentrations of 0.025~0.1 M aqueous solutions. The fine particles were prepared to have the compositions of 90~97.5 wt% of $ZrO_2$ and 2.5~10 wt% of $TiO_2$. The temperatures for particle synthesis were regulated to be 400~550$^{\circ}C$ as a drying zone, 800~1100$^{\circ}C$ as a pyrolysis zone. The produced fine particles were collected by a wet process and analyzed to investigate characteristic properties after being dried. The compositions of ceramic fine particles were determined by Inductively Coupled Plasma-Atomic Emission Spectroscopy(ICP-AES) technique and phases, morphologies and particle sizes of those were investigated by Raman Spectroscopy, X-ray diffraction(XRD), Scanning Electron Microscopy(SEM), Transmission Electron Microscopy(TEM) and Particle Size Analyzer(PSA) techniques.

  • PDF

The synthesis and formation mechanism of the fine $BaTiO_3$ powders by ultrasonic spray pyrolysis (초음파 분무 열분해법에 의한 $BaTiO_3$ 미분말의 합성 및 형성기구 규명)

  • Heo, H.B.;Shin, K.C.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.2
    • /
    • pp.178-189
    • /
    • 1994
  • Fine $BaTiO_3$ powder was synthesized from the various starting solution with 0.05 M by ultrasonic spray pyrolysis method. The conditions of synthesis were fixed on flow rate was 0.5 cm/sec, low temperature furnace was $300^{\circ}C$, and high temperatures furnace was $700^{\circ}C$. The formation procedure was investigated directly by SEM with the collected particle from the each reaction step. Also, the trace of particle in reaction tube was researched theoretically. Fine $BaTiO_3$ was synthesized only in the case of nitrate aqueous solution. The synthesized $BaTiO_3$ powder was porous and spherical which was consist of primary particle at the size of 19.1 nm. The formation procedure was as follows : the particle size decreased in drying step and then increased in initial thermal decomposition step. Finally, particle size was decreased to $0.42 {mu}m$. The trace of particle in reaction tube was also theoretically simulated and discussed.

  • PDF

Structural and electrical properties of ZnO:In films deposited on glass substrates by a spray Pyrolysis method (분무열분해법에 의한 ZnO:In 박막의 구조와 전기적 특성)

  • 서동주;박선흠
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.213-218
    • /
    • 2001
  • ZnO and ZnO:In films were deposited on the glass substrates by a spray pyrolysis method. It is found that ZnO films were polycrystalline with the preferred orientation (002) and have a hexagonal structure with lattice constants of a=3.242 $\AA$ and c=5.237 $\AA$. The crystalline structure of ZnO:In films deposited at the In content of 0~6.03 at. % were the same as that of ZnO films, but its lattice constants was slightly larger than those of ZnO films. The relative atomic ratios of metal ion of ZnO:In films were in accordance with those of the spray solution within the experimental error. The minimum resistivity of and the maximum carrier concentration of 19.1 $\Omega\cdot\textrm{cm}$ and the maximum carrier concentration of $2.11\times10^{19}\textrm{cm}^{-3]$ obtained from the ZnO:In films when In content was 2.76 at. %. The optical transmission of the sample grown at the In content of 3.93 at. % was about 95% in the wavelength between 400 and 800 nm.

  • PDF