• Title/Summary/Keyword: 분무 액적

Search Result 375, Processing Time 0.026 seconds

분무진공동결건조기 개발

  • Ryu, Gyeong-Ha;Ban, Byeong-Min;Kim, Jae-Hyeong;Son, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.258-258
    • /
    • 2013
  • 최근 건조 제품의 양질화, 고급화 및 편의화가 요구되어 이를 충족시키기 위한 새로운 건조방법이 계속 개발 되어 왔다. 이러한 방법들 중에서 저온과 진공하에서 건조가 이루어지는 진공 동결 건조는 가장 완벽한 건조 방법으로 최근 실용화 되고 있다. 진공동결건조란 건조의 한 종류로 수분을 함유한 시료를 동결시킨 후 진공펌프를 이용하여 수증기압을 3중점 이하로 낮추어 얼음을 직접 증기로 만드는 승화의 원리에 의해서 얻어진다. 분무진공동결건조의 특징은 (1) 물리적구조의 보존성, (2) 화학적인 안정성, (3) 생물학적인 활동의 보존성, (4) 제품의 높은 복원성 및 재생성이다. 따라서 분무진공동결건조 기술은 크게 진공, 분무, 동결, 건조, 멸균 등과 같은 요소기술의 복합기술이라 할 수 있다. 분말을 제조하기 위해서 진공동결건조 후 분쇄하는 방법을 사용하나 본 방법에서는 정밀화학품 제조를 위해서 분무진공동결건조 방식을 사용한다. 이를 통하여 적당한 크기인 5~10 um의 입경 제조가 가능하고, 공기동력학적인 입경이 기존 방식에 비해 작아서 허파까지의 운반효율이 1.5~2배 우수하다. 화학, 의학 분야에서의 분무동결 건조는 주로 민감한 제품, 즉 생물학적 고유성의 손상 없이 물을 제거하는데 사용되어 영구적으로 저장 가능한 상태로 보관할 수 있으며 물의 첨가로 원상태로 복구할 수 있어서 매우 각광을 받고 있다. 의약용 냉동건조 제품은 항생물질, 박테리아, 혈청, 백신, 검사 약물, 단백질을 포함하는 생물공학 제품들, 세포, 섬유, 화학제품 등이 있으며 주로 vial 또는 ampule 상태로 건조가 이루어진다.본 연구에서는 원료를 $-194^{\circ}C$의 액체질소에 분무시켜 동결된 미립자를 형성한 후 진공 및 저온상태에서얼음의 승화(sublimation)에 기반한 1차 건조와 수증기 탈착(desorption)에 기초한 2차 건조 과정으로 구성된 분무진공동결건조기를 개발하였다. 분무동결 과정의 해석을 통해 2유체식 노즐을 통해 분무된 미세 입경의 액적이 액체 질소 표면까지 도달하는 회수률, 분무 노즐의 위치, 운전 조건 및 용기의 설계의 최적화를 수행하였다. 초기 액적속도, 분무노즐의 높이, 흡입구 추가에 따른 액적 유동 및 회수의 특성을 제시하였으며 이를 통한 분사시스템 고도화 가능성을 제시하였다. 구형의 미세 입자가 적층된 제품의 동결건조 공정의 해석은 흡착승화 모델(sorption sublimation model)을 기반으로 다음과 같은 열전달, 물질전달, 상변화 모델을 고려하여 유도되었다. 분무노즐 및 냉동/진공 배기계 시작품을 개발하여, 표면의 고다공도를 갖춘 입경 3~20 m 정도의 시료를 얻을 수 있으며, 동역학적 입경 5 m 충족함을 확인하였다.

  • PDF

Numerical Simulations on Combustion Considering Propellant Droplet Atomization and Evaporation of 500 N Class Hydrogen Peroxide / Kerosene Rocket Engine (500 N급 과산화수소/케로신 로켓엔진의 추진제 액적 분무와 증발을 고려한 연소 수치해석)

  • Ha, Seong-Up;Lee, Seon-Mi;Moon, In-Sang;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.862-871
    • /
    • 2012
  • The numerical simulations on 500-N class rocket engine using 96% hydrogen peroxide and kerosene have been conducted, considering atomization, evaporation, mixing and combustion of its propellants. The grid containing 1/6 part of combustion chamber has been generated and it is assumed that 3 kinds of liquid-phase propellants (kerosene, hydrogen peroxide and water) were injected as hollow cone spray pattern, using Rosin-Rammler function for distribution of droplet diameter. For the calculation of combustion the eddy-dissipation model was applied. Owing to small size of combustion chamber and large specific heat / latent heat of hydrogen peroxide and water the propulsion characteristics were highly influenced by the size of droplet particles, and in this analysis the engine with droplet particles of 30 micron in average has shown the best propulsion performance.

Theoretical Model of Coaxial Twin-Fluid Spray In a Liquid Rocket Combustor (연소실 내 동축형 2-유체 분무의 이론적 모델)

  • 조용호;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.37-44
    • /
    • 2002
  • A theoretical study of spray and combustion characteristics due to coaxial twin-fluid injection is conducted to investigate the effects of liquid jet property, droplet size, contact length and liquid jet velocity. Model is properly validated with measurements and shows good agreement. Prediction of jet contact length, droplet size, liquid jet velocity reflects genuine features of coaxial injection in physical and practical aspects. Both the jet contact length and tile droplet size are reduced in a linear manner with an increase of injector diameter. Cross sectional area of liquid intact core is reduced with augmented jet splitting rate, thus the jet is accelerated to maintain the mass continuity and with an assistant of momentum diffusion by burnt gas.

The Atomization Mechanism and Spray Characteristics of Drum Type Rotary Atomizer (드럼형 회전연료노즐의 미립화 기구 및 분무특성 연구)

  • Lee, Dong-Hun;Choi, Hyun-Kyung;Choi, Seong-Man;You, Gyung-Won;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • The atomization phenomena and spray characteristics of drum type rotary atomizer using centrifugal force from high rotational speed of gas turbine engine shaft were studied through rotary atomizer modeling analysis and experimental method. A test rig for rotary atomization that has range of $5,000{\sim}40,000\;rpm$ was used to make similarity for high speed rotating shaft. Spray visualization methodology and Phase Doppler Anemometry were also used to investigate the atomization mechanism and spray characteristics. We found that the rotating fuel spray has unique breakup process and we have to make breakup point earlier through increasing rotating speed to improve atomization performance.

Effect of Gas-liquid Ratio on Characterization of Two-Phase Spray Injected into a Cross-flow (횡단유동에 분사된 이유체 분무의 기체 액체비가 분무특성에 미치는 영향)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • The effect of two-phase spray injected into subsonic cross-flow was studied experimentally. External-mixing of two-phase spray from orifice nozzle with L/d of 3 was tested with various air-liquid ratio that ranges from 0 to 59.4%. Trajectory of spray and breakup phenomena were investigated by shadowgraph photography. Detailed spray structure was characterized in terms of SMD, droplet velocity, and volume flux using PDPA. Experimental results indicate that penetration length was increased and collision point of liquid jets approached to nozzle exit and distributions of mist-like spray were obtained by increasing air-liquid ratio.

Spray Breakup Characteristics of LRE Injector (액체로젯엔진 인젝터의 분무 분열특성)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.157-160
    • /
    • 2007
  • Spray characteristics of an injector employed in liquid rocket engine is investigated by Particle Image Velocimetry and Dual-mode Phase Doppler Anemometry measurements. Instantaneous plane images captured by PIV technique are examined in order to judge a pass-fail criteria of spray injection performance. DPDA technique is also applied in order to measure the velocity and diameter of spray droplets. The eternal objective of this study is to evaluate an injector performance which may be utilized for the design of brand-new ones through the clear understanding of spray characteristics.

  • PDF

Numerical Study for the Reacting Characteristics of Orimulsion Gasification (오리멀젼의 가스화 반응 특성에 관한 수치해석 연구)

  • 나혜령;이진욱;윤용승
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.309-316
    • /
    • 1999
  • A numerical study for the turbulent reacting flow in an orimulsion gasifier has been carried out to analyze the characteristics of chemical reaction by orimulsion droplets. In this study, our interest has been focused on the effect of oxidizer to orimulsion ratio, which is one of the key parameters of gasification operation, as well as on the distribution of chemical species. In addition, we have conducted numerical calculations to understand the effect of droplet size, spray angle and injection velocity of fuel so as to acquire the basic information on the operating range of orimulsion gasifier. The result of numerical calculations showed that the gas composition of CO and H$_2$concentrations was the highest when the oxidizer to orimulsion ratio was about 0.88 and the reactivity of orimulsion increased as the droplet size reduced with proper spray angle. Also, we have carried out the analysis on the orimulsion gasification in the 100 ton/day-scale gasifier based upon the prior study in order to obtain the basic data for the proper operating condition using orimulsion feed.

  • PDF

A Numerical Study on Air-Assisted Breakup of Fuel Droplets (연료액적의 Air-Assisted Breakup에 대한 수치해석적 연구)

  • Hwang, S.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.57-65
    • /
    • 1996
  • Breakup models are evaluated using the experimental drop trajectory ill this study. The experimental conditions corespond to Weber # 56, 260, 463. Computations are carried out using a modified KIVA-II program with 2 different breakup submodel(TAB and Wave breakup model) and dynamic drag model which the drag coefficient changes dynamically with distortion parameter. Results show that computation with wave breakup model represents the experimental drop trajectory better than that with TAB submodel. And result with wave breakup model shows similar breakup pattern to experimental breakup process. It is thought that in wave breakup model the small drops are shed from the parent drop throughout parcel lifetime such thai this modelling represents the real breakup process well.

  • PDF

Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet (초기 직경이 n-heptane 액적 연소 특성에 미치는 영향)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.94-99
    • /
    • 2013
  • The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.