• Title/Summary/Keyword: 분무체적

Search Result 47, Processing Time 0.026 seconds

Method and characteristics of liquid atomization (액체 미립화의 방법과 특징)

  • 이충원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.10-16
    • /
    • 1983
  • 액체의 미립화는 기계산업분야 뿐만 아니라, 농약살포, 화학 공학의 분무건조, 반응의 촉진, 분 체제조, 식품공업 등 폭넓게 이용되며 또한 각분야에서 그 필요성이 강조되고 있다. 특히 기계 산업분야에서는 액체연료의 분무연소(boiler, gas turbine, 자동차용engine등) 원자로 노심의 spray cooling, spray drying, spray painting 등 그 이용도는 날로 증가되는 추세에 있다. 액체를 미 립화하는 이유는 각각의 분야나 사용하는 목적에 따라 다르지만, 대별하면 다음과 같다. (1) 액체의 단위 체적당 표면적을 증대시키기 위하여 (2) 직경이 작은 입자의 필요성 (3) 균일한 입경의 액적군을 얻기 위하여 등을 들 수 있다. 액체의 미립화에 대한 요구는 산업의 발당, 대기오염, 생energy 등의 문제가 중요시됨에 따라 다양화되고 있다. 따라서 응용면에서는 atomizer의 성능개선과 설계법, 새로운 미립화방법, 상업에의 분무이용기술, 분무계측법 등의 개발이 필요하게 된다. 액체미립화에서 취급하는 사항은 그 내용에 따라 다음과 같이 분류된다. (1) 액체의 미립화기구 : 기액계면의 불안정성과 분열기구에 관한 것으로, 액체형상으로써 액주, 액막 및 액적으로 나눌 수 있다. (2) 액체의 미립화 방법과 특성 : energy의 종유와 부가방식에 따랄 나누어진다. (3) 합체, 분산, 증발 등 분무의 운동이나 열적거동 (4) 분무입경이나 운동의 계측법과 특성도시 (5) 액체미립화의 각종응용 본보에서는 상기의 각 항목중, 특히 액체의 미립화방법과 분무특성에 대해서만 말하기로 한다.

  • PDF

Spray Characteristics of Charge Injected 2-fluid Nozzle for Non-conducting Liquid (비전도성 액체의 전하주입형 2-유체 노즐에 대한 분무 특성)

  • Park, Min-Gyu;Choi, Young-Joo;Kim, Sang-Soo
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.155-160
    • /
    • 2006
  • Spray characteristics of charge injected 2-fluid nozzle for non-conducting liquid have been studied. Spray current, specific charge and SMD of diesel have been measured. Spray current and specific charge are proportional to applied voltage. Air flow did not effect on spray current and specific charge. SMD decreases as air flow rate increases and decreases as applied voltage increases additionally. Spray angle increases as applied voltage increases. Fine droplets are obtained by charge injected 2-fluid nozzle without charge loss.

  • PDF

A Study on the Atomizing Mechanism for the Swirl Nozzle (와권(渦卷) 노즐의 무화기구(霧化機構)에 관(關)한 연구(硏究))

  • Lee, Sang Woo;Sakai, Jun;Ishihara, Akira
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.81-97
    • /
    • 1987
  • Two nozzles with different size (Figure 2) were particularly designed to supply air through the swirl core into the central part of the liquid stream in the same parallel direction to produce a well-mixed air and water in the whirl chamber as spray liquid in bubble formation. Atomization was attempted to improve by using both the preliminary break-up process with less viscosity and less surface tension in the whirl chamber and the effects of increased frequency of the band of drops with the raised ambient air density in front of the nozzle orifice. The volumetric ratio between spray liquid and air on four levels was used to investigate the effects of air as a component of the mixture on atomization. The results of the experiment were summarized as follows; Droplet size became progressively finer as the operating pressure was increased in the range of $0.70kg/cm^2$ to $6.33kg/cm^2$, which was similar to the previous works. The new atomizing mechanism so-called 'air-center nozzle' gave a narrower range in droplet size distribution with smaller volumetric median diameter (VMD) than that of the existing spray system at a given pressure, which showed the possibility of improvement of atomization in a certain limit. The volumetric median diameter produced by the new atomizing mechanism was decreased from the central region toward the exterior edges across the spray pattern.

  • PDF

The Spray Characteristics of Simplex Atomizer under Various Shroud Air Conditions with Swirl Flow (쉬라우드 공기의 선회 유동 특성 변화에 따른 심플렉스 연료 노즐의 분무 특성)

  • Lee, D.H.;Lee, K.Y.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.35-41
    • /
    • 2004
  • The spray characteristics were investigated to study the effect of shroud air with swirl flow on simplex type fuel injector for gas turbine combustor. The spray tests using PDA(Phase Doppler Anemometry) technique were conducted to compare the performance of simplex atomizer with $0^{\circ},\;40^{\circ},\;50^{\circ}$ swirled-shroud air conditions. In this study. we found that the injector with strong swirled-shroud air has the better atomization Performance compared with weaker swirled and non-swirled conditions.

  • PDF

A Spray Characteristics of Dual Orifice Injector with Different Fuel Properties (연료 종류에 따른 이중 오리피스 노즐의 분무 특성 연구)

  • Lee, D.H.;Choi, S.M.;Park, J.B.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.7-15
    • /
    • 2003
  • The effects of fuel density and fuel viscosity on spray characteristics were investigated under two different gas turbine fuels and various fuel supply pressure conditions through measurement of SMD, number density and volume flux by using PDPA system in dual orifice injector for gas turbine engines. In this study, we found out that the droplet size and spray structure are strongly depend on fuel density for dual orifice injector. The spray characteristics of high density fuel in dual orifice injector are similar with the characteristics of low density fuel in single orifice injector. The shear region between primary main fuel stream and secondary main fuel stream is examined in low density fuel condition but not exist in high density fuel condition, then this shear region is very important in quality of gas turbine spray. There are worth consideration for the effect of fuel density on spray characteristics in frontal device design to improve combustion efficiency.

  • PDF

Unstructured Finite-Volume Analysis of Vaporization Characteristics of Fuel Droplets in Laminar Flow Field (비정렬 유한체적법을 이용한 유동장 내의 연료액적 증발 특성 해석)

  • Kim, T.J.;Kim, Y.M.;Sohn, J.L.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • The present study has numerically analyzed the vaporization characteristics of fuel droplets in the high temperature convective flow field. The axisymmetric governing equations for mass, momentum, energy, and species are solved by an iterative and implicite unstructured finite-volume method. The moving boundary due to vaporization is handled by the deformable unstructured grid technique. The pressure-velocity coupling in the density-variable flows is treated by the SIMPLEC algorithm. In terms of the matrix solver, Bi-CGSTAB is employed for the numerically efficient and stable convergence. The n-decane is used as a liquid fuel and the initial droplet temperature is 300K. Computations are performed for the nonevaporating and evaporating droplets with the relative interphase velocity(25m/s). The unsteady vaporization process has been simulated up to the nondimensional time, 25. Numerical results indicate that the mathematical model developed in this study succesfully simulates the main features of the droplet vaporization process in the convective environment.

  • PDF

An Experimental Study on the Characteristics of Twin Spray Ejected from Two Swirl Spray Nozzles (두개의 와류분무 노즐로부터 분사되는 이중분무의 분무특성에 관한 실험적 연구)

  • 김인구;이상룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.359-372
    • /
    • 1988
  • Characteristics of twin spray ejected from two swirl spray nozzles were studied experimentally. By using a patternator for measuring volumetric flux of drop flow at various locations inside the spray, variation of the twin spray pattern along the axial direction was studied with changing the injection pressure and the distance between the nozzles. The general findings from the experiments are as follows: (i) as axial distance from the nozzles increases, the spray pattern in x-z plane which contains both nozzles changes significantly. On the other hand the spray pattern in y-z plane which passes the midpoint between two nozzles remains almost unchanged at outer region as axial distance and injection pressure vary; (ii) at the downstream of the twin spray with spray interaction, the maximum volumetric flux in y-z plane (q$_{max}$)$_{y}$, has tendency to become larger than that of x-z plane (q$_{max}$)$_{x}$, due to a characteristic(hollow cone shape) of the constituting swirl sprays, and this trend is pronounced at higher injection pressure since the cross-section of each single spray remains hollow at the longer axial distance from each nozzle with higher injection pressure; (iii) at a certain axial distance from the nozzles, the cross-sectional shape of the boundary of the twin spray tends to be circular similar to that of the single spray with twice the flow-rate, and that distance is not proportional to the distance between two nozzles; (iv) though there are some collisions between droplets from each nozzles of twin spray, in present experimental range, the flow pattern of gas including the entrainment effect plays the key role in spray interaction.n.ion.n.

Transient Breakup Phenomena of Initial Spray from High-Pressure Swirl Injector (와류형 고압인젝터의 초기분무의 분열 과도현상)

  • Choi, Dong-Seok;Kim, Duck-Jool;Ko, Chang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The disintegration process of initial spray from high-pressure swirl injector was investigated at different injection pressures. The transient breakup phenomena that were difficult to observe at high injection pressure were easily observed at the low injection pressure of 0.4MPa. The effect of fuel remained inside a nozzle hole volume on the penetration of initial spray was also investigated. The disintegration process of initial spray could be classified four regions: the formation of mushroom shape, the first collision, the second collision, and the development of spray, The liquid film of cup shape was particularly found in the second collision region, and the growth ratio of its length and width at low and high injection pressures were compared.

An Experimental Study on the Spray Characteristics of Internal Mixing Atomizer for Twin Fluid (내부혼합형 2유체 미립화기의 분무 특성에 관한 실험적 연구)

  • Kim, K.C.;Ha, M.H.;NamKung, J.H.;Lee, S.G.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.693-698
    • /
    • 2001
  • An experimental study was carried out with an aerated nozzle. This nozzle was well known that the performance of the atomization is better than other ones even though the supplied air pressure is lower than that of them. The purpose of this investigation is to provide the essential information of the aerated nozzle from the nozzle exit. The experimental work was performed in order to analyze the characteristics of the overall flow field from the nozzle exit. The 2-D PDPA system was used to acquire the data in the concerned region. The characteristics of the mean velocity distribution, half-width, and SMD were mainly analyzed. Also the correlation between turbulent kinetic energy and SMD was described with ALR.

  • PDF

Effect of Ambient Conditions on the Soot Generation of Decane Fuel Droplet (분위기 조건이 Decane 액적의 Soot 생성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.211-215
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet soot generation of decane fuel. To achieve this, this paper presents the experimental results on the decane droplet combustion conducted under various ambient pressure($P_{amb}$), and oxygen concentration($O_2$) conditions. At the same time, the experimental study was conducted in terms of soot volume fraction($f_v$) and its maximum value. Also, visualization of single fuel droplet was conducted by high resolution CCD camera and ambient pressure($P_{amb}$) and oxygen concentration($O_2$) was changed by control system. It was revealed that higher ambient pressure($P_{amb}$), and oxygen concentration($O_2$) enhanced the soot generation and improved the maximum soot volume fraction( $f_v$).