• 제목/요약/키워드: 분무액적

검색결과 373건 처리시간 0.019초

산질화 표면에서 액적의 증발열전달 특성 (Evaporative Heat Transfer Characteristics of Droplet on Oxi-nitriding Surface)

  • 김대윤;이성혁
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.53-57
    • /
    • 2016
  • The present study aims to experimentally investigate the evaporative heat transfer characteristics of Oxi-nitriding SPCC surface. Moreover, the heat transfer coefficient was examined with respect to surface temperature during droplet evaporation. In fact, the nitriding surface showed significant enhancement for anticorrosion performance compared to bare SPCC surface but the thermal resistance also increased due to the formation of compound layer. From the experimental results, the evaporative behavior of sessile droplet on nitriding surface showed similar tendency with the bare surface. Total evaporation time of sessile droplet on the nitriding surface was delayed less than 5%. The difference in heat transfer coefficient increased with the surface temperature, and the maximum difference was estimated to be around 11% at $80^{\circ}C$ surface. Thus, this nitriding surface treatment method could be useful for seawater heat exchanger industries.

고온벽과 충돌하는 나노유체 액적 거동에 관한 연구 (A Study on the Behavior of Nano-fluid Droplet Impacting Upon a Hot Surface)

  • 김으뜸;박인한;배녹호;강보선
    • 한국분무공학회지
    • /
    • 제20권1호
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, the behavior of water or nanofluid droplets impacting upon a hot surface was investigated by visualization of impacting phenomena with time-delayed photographic technique. Changing the mass ratio of nanofluid and the temperature of the heated surface, the characteristics of the spreading behavior and the diameter of spreading liquid film was compared between water and nanofluid droplets. The impacting droplet spreaded as a liquid film after impact and nanofluid droplets spreaded more widely than water droplets. After reaching the maximum diameter, water droplets shrinked more than nanofluid droplets. Based on this, the heat transfer area from a hot surface to impacting nanofluid droplets would be wider than that of impacting water droplets. Considering individual impacting droplet only, spray cooling using nanofluid would be better than using water.

전기수력학적 미립화에서 액적 형성에 영향을 미치는 인자에 관한 실험적 연구 (A Study on Influence Factors on Drop Formation in Electrohydrodynamic Atomization)

  • 성기안;이창식
    • 한국분무공학회지
    • /
    • 제8권2호
    • /
    • pp.24-30
    • /
    • 2003
  • An experimental study was performed to investigate the influence factors of drop formation in electrohydrodynamic atomization. The mode of electrohydrodynamic atomization depended on the various factors such as the flow rate of the liquid, the inner diameter of the nozzle, the distance between the nozzle tip and the ground electrode, the shape of the ground electrode. and the applied high voltage. This work was performed to investigate the experimental analysis for the flow pattern visualization of droplets, and the relationship between voltage application and the behavior of liquid atomization. Uniform drops of different sizes can be obtained at the inception of the spindle mode by charging the flow rate and the electric field. The drop size also decreased when the flow rate was raised for the spindle mode. The whipping motion occurred beyond 7kV and before the corona started to take effect.

  • PDF

비등점의 가열 표면에서 나노유체 액적의 증발 특성 (Characteristics for Nanofluid Droplet Evaporation on Heated Surface at Boiling Temperature of Base Liquid)

  • 김대윤;정정열;이성혁
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.236-240
    • /
    • 2015
  • This study aims to experimentally investigate the evaporation characteristics of nanofluid droplet on heated surface at boiling temperature of DI-water. In particular, textured surface was used to examine the effect of wettability on evaporation. At the initial stage of evaporation process, dynamic contact angle (DCA) of nanofluid droplet with 0.01 vol.% concentration on textured surface rapidly increased over its equilibrium contact angle by generated large bubble inside the droplet due to lower wettability. However, contact angle of nanofluid droplet with higher concentration on textured surface decreased with surface tension. In addition, total evaporation time of droplet on textured surface was considerably delayed due to reduction of contact area between droplet and solid surface. Thus, evaporation characteristics were highly affected by the nanofluid concentration and surface wettability.

잉크젯 헤드를 이용한 액적 토출 현상의 실험적 분석 (Experimental Analysis of Droplet Formation Process for Inkjet Printhead)

  • 조용민;박성준
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.163-169
    • /
    • 2010
  • Jetting stability is the most important factors in inkjet printing because printing quality is totally determined by shape of the droplets on the substrate. In order to acquire stable jet, viscosity and dynamic behavior of the ink must be considered. In addition, waveform to drive the inkjet printhead is also to be controlled. In this study, the driving waveform composed of rising time, dwell time and falling time is optimized to obtain a stable jetting using drop watcher system. Also, effect of ink viscosity on jetting is experimentally investigated by changing the temperature of ink cartridge. As a result, jetted drop having uniform velocity is acquired.

단일 액적의 고체 표면 액막과의 충돌 현상에 관한 연구 (A Study on the Phenomena of Droplet Impact onto a Liquid Film)

  • 고천석;유준호;최낙완;강보선
    • 한국분무공학회지
    • /
    • 제18권1호
    • /
    • pp.1-8
    • /
    • 2013
  • In this paper an experimental study is presented to investigate the dynamic behavior of impacting droplet onto a liquid film. The main parameters are the droplet velocity and the thickness of the liquid film. Photographic images are presented to show the formation of crown, central jet and disintegrating droplet from the central jet. The emphasis is on presenting the time evolution of crown diameter, crown height, central jet height and the size of disintegrating droplet from the central jet. The diameter and height of crown are higher for faster droplet and thinner liquid film. On the other hand, the height of central jet are higher for faster droplet and thicker liquid film. The size of disintegrating droplet from the central jet heavily depends on the droplet velocity; Larger droplet is produced with faster falling droplets.

나노입자 크기에 따른 나노유체 액적의 증발 열전달 특성 (Influence of Particle Size on Evaporation Heat Transfer Characteristics of Nanofluid Droplet)

  • 이형주;김대윤;이성혁
    • 한국분무공학회지
    • /
    • 제22권1호
    • /
    • pp.36-41
    • /
    • 2017
  • The present study investigates the evaporation heat transfer characteristics of nanofluid droplet for different nanoparticle sizes. Also, the heat transfer coefficient was measured at different nanoparticle concentrations during evaporation. From the experimental results, it is found that the evaporation behavior of sessile droplet can be considered as constant radius mode due to pinning effect. The total evaporation time of sessile droplet decreases with nanoparticle size up to 7.9% for 0.10 vol% nanofluid droplet. As nanoparticle concentration increases, the clear difference in heat transfer coefficient is observed, showing that the size effect should be examined. This result would be helpful in designing the correlation between the nanoparticle size and the heat transfer characteristics for various applications.

디젤/1-부탄올 혼합연료 단일액적의 자발화 현상 (Autoignition Phenomena of a Single Diesel/1-Butanol Mixture Droplet)

  • 김혜민
    • 한국분무공학회지
    • /
    • 제23권2호
    • /
    • pp.90-95
    • /
    • 2018
  • The goal of this study is to experimentally observe the autoignition phenomena of a diesel/1-butanol mixture droplet in ambient pressure and $700^{\circ}C$ condition. A volume ratio of 1-butanol in the fuel was set to 25, 50 and 75%. A single droplet was installed at the tip of fine thermocouple, and the electric furnace dropped down to make elevated temperature condition. Droplet behavior during the experiment could be divided into 3 stages including droplet heating, puffing and autoignition/combustion. Puffing process intensively observed for the case of 1-butanol volume ratio of 25 and 50%, but did not occur at 75%. Increase of 1-butanol volume ratio hindered rise of the droplet temperature and delayed ignition. In addition, puffing process also affected on autoignition, so the ignition delay of 1-butanol volume ratio of 50% was became longer than that of 75% case.

상압조건에서 1-부탄올 젤 연료액적의 연소특성 (Combustion Characteristics of a 1-Butanol Gel Fuel Droplet in Atmospheric Pressure Condition)

  • 남시욱;김혜민
    • 한국분무공학회지
    • /
    • 제26권3호
    • /
    • pp.120-126
    • /
    • 2021
  • Combustion characteristics of a 1-butanol gel fuel were studied in atmospheric pressure condition. The butanol gel fuel was manufactured by adding hydroxypropyl-methyl cellulose (HPMC) as a gellant and the effect of the gellant concentration was observed. The combustion process of a single butanol gel droplet was divided into 3 stages including droplet heating, microexplosion, and gellant combustion. The flame was distorted compared to butanol + water mixture because of micro-explosion during the combustion. Increase of gellant concentration delayed the droplet ignition, but the combustion rate was improved due to the mass ejection during the micro-explosion.

화염 불안정성에 따른 개선된 이미지 처리 기법을 활용한 디젤-바이오디젤 혼합 연료 액적의 연소 특성 (The Combustion Characteristics of Diesel-Biodiesel Blended Fuel Droplets Using the Modified Image Processing Method According to Flame Instability)

  • 최주환;임영찬;서현규
    • 한국분무공학회지
    • /
    • 제26권3호
    • /
    • pp.142-148
    • /
    • 2021
  • The objective of this study is to analyze the basic flame behavior characteristics using the single fuel droplet combustion of diesel, palm-based biodiesel, and canola-based biodiesel. The results were compared and analyzed through the post processed image, which was applied the threshold level for removing noise in the raw image. The raw image was taken by a high-speed camera during the entire combustion process. At the same time, the maximum flame length, which was measured by the application code of the MATLAB program, the ignition delay, and the combustion period were compared and analyzed.