• Title/Summary/Keyword: 분무분열

Search Result 153, Processing Time 0.029 seconds

The Influence of Liquid Atomization Models on Diesel Sprays (디젤분무에 대한 액체미립화모델들의 영향)

  • 이성혁;유홍선;홍기배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.22-30
    • /
    • 2000
  • The present article deals with comparisons of published liquid breakup models for diesel sprays to analyze the influence of breakup models on various spray parameters. The three different models tested in this study are the surface wave instability (Wave) model, the Taylor analogy breakup (TAB) model, and the drop drag model(DDM). The numerical results using these models are compared with several experimental data to assess the prediction capabilities of breakup models. Additional task in this study is to investigate effects of the breakup time constant in the Wave model on the spray parameters because the spray behavior is sensitive to the breakup time constant. It is seen that there is uncertainly about the breakup time constant indicating that the suitable acceptance of the constant is important, and the TAB model generally shows significant under-prediction of Sauter Mean Diameter(SMD). In addition, it may be indicated that differences between the DDM and Wave model are not significant, showing that the DDM may be suitable for air-assisted atomization rather than pressure atomization.

  • PDF

Measurement of Breakup Length of Viscous Liquid Jet in Stagnant Air (정지공기중 점성유체 분류의 분열길이 측정)

  • Rhim, Jung-Hyun;Ryu, Keun-Young;Lim, Sung-Bin;No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.1-7
    • /
    • 1998
  • The measurement of breakup length of viscous liquid jet in stagnant air was conducted by a 3CCD digital video camera. The nozzle diameters of 4, 6, 8mm with L/d=50 were selected and the dynamic viscosity of viscous liquid made of glycerine and water was in the range of $1.061\times10^{-6}m^2/s$ to $4.935\times10^{-5}m^2/s$. The critical velocity is decreased and the breakup length is increased with the increase of nozzle diameter at the same dynamic viscosity of liquid. At the same nozzle diameter, the breakup length and the critical velocity are both increased with the increase of dynamic viscosity of liquid. It is found in the theoretical analysis that the initial disturbance level is the main cause of occurrance of critical Reynolds number in the stability curve. The comparison of experimental critical Reynolds number and the empirical correlation by Tanasawa and Toyota reveals the relatively good agreement.

  • PDF

A Study on the Non-evaporating Diesel Spray Characteristics as a Function of Ambient Pressure in Constant Volume Combustion Chamber (정적챔버에서 분위기 압력에 따른 비증발 디젤분무특성 연구)

  • Jeon, Chung-Hwan;Jeong, Jeong-Hoon;Kim, Hyun-Kyu;Song, Ju-Hun;Chang, Young-June
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.645-652
    • /
    • 2010
  • The aim of this investigation was study on the non-evaporation diesel spray characteristics injected through a common-rail diesel injector under various ambient pressure. The diesel spray was investigated with observation of macroscopic characteristics such as spray tip penetration and spray cone angle by the shadowgraph and the image processing method. The numerical study was conducted using a computational fluid dynamics code, AVL-FIRE. The breakup models used were WAVE model and standard $k-{\varepsilon}$ turbulence model was applied. The numerical study used input data which spray cone angle and fuel injection rate was achieved by Zeuch's method. Comparison with experimental result such as spray tip penetration was good agreement. Distribution of droplet diameter were conducted on four planes where the axial distances were 5, 15, 39 and 49mm respectively downstream from the orifice exit.

Comparison of GDI Spray Prediction by Hybrid Models (혼합모델에 의한 GDI 분무예측의 비교)

  • Kang, Dong-Wan;Hwang, Chul-Soon;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1744-1749
    • /
    • 2003
  • The purpose of this study is to obtain the information about the development process of GDI spray. To acquire the characteristics of GDI spray, the computational study of hollow cone spray for high-pressure swirl injectors was performed. Several hybrid models using the modified KIVA code have been introduced and compared. WB model and LISA model were used for the primary breakup, and DDB and APTAB models were used for secondary breakup. To compare with the calculated results, the experimental results such as cross-sectional images and SMD distribution were acquired by laser Mie scattering technique and Phase Doppler Analyzer respectively. The results show that LISA+APTAB hybrid model has the best prediction for spray formation process.

Characteristic of Liquid Jet in Subsonic Cross-flow (횡단가스 유동에 분사되는 액체제트의 분무특성)

  • Ko, Jung-Bin;Lee, Kwan-Hyung;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • The present study has numerically and experimentally investigated the spray behavior of liquid jet injected in subsonic cross-flow. The corresponding spray characteristics are correlated with jet operating parameters. The spray dynamics are known to be distinctly different in the three regimes: the column, the ligament and the droplet regimes. The behaviors of column, penetration and breakup of liquid jet have been studied. Numerical and physical models are base on a modified KIVA code. The primary atomization is represented by a wave model base on the KH(Kelvin-Helmholtz) instability that is generated by a high interface relative velocity between the liquid and gas flows. In odor to capture the spray trajectory, CCD camera has been utilized. Numerical and experimental results indicate that the breakup point is delayed by increasing gas momentum ratio and the penetration decreases by increasing Weber number.

  • PDF

An Experimental Study on the Spray Structure of a Gasoline Engine Injector (가솔린 기관용 인젝터의 분무 구조에 관한 실험적 연구)

  • Cho, B.O.;Lee, C.S.;Im, K.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.118-130
    • /
    • 1995
  • Fuel spray in a gasoline engine is a significant factor for the decision of engine power, pollutant emission and the design of intake manifold system. Three kinds of fuel which has other physical properties are chosen in this study, and it is observed using an image processing method that the mechanism and structure of free fuel spray with a throttle type gasoline injector, and the detailed characteristics of droplet size and velocity distributions are obtained by macro and micro-scopic measuring method respectively. It is verified that the initial breakup behaviors are depended on We like the result of Reitz's study, and also observed that the spray of octane and solvent with Re of 210~330 and 270~330 respectively are better than ethanol which has relatively high density and viscosity.

  • PDF

Influence of Droplet Drag Models on Diesel Spray Characteristics under Ultra-High Injection Pressure Conditions (극초고압 조건에서 디젤 분무 특성에 미치는 액적 항력 모델의 영향)

  • Ko, Gwon-Hyun;Lee, Seong-Hyuk;Lee, Jong-Tai;Ryou, Hong-Sun
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.42-49
    • /
    • 2004
  • The present article investigates the influence of droplet drag models on predictions of diesel spray behaviors under ultra-high injection pressure conditions. To consider drop deformation and shock disturbance, this study introduces a new hybrid model in predicting drag coefficient from the literature findings. Numerical simulations are first conducted on transient behaviors of single droplet to compare the hybrid model with earlier conventional model. Moreover, using two different models, extensive numerical calculations are made for diesel sprays under ultra-high pressure sprays. It is found that the droplet drag models play an important role in determining the transient behaviors of sprays such as spray tip velocity and penetration lengths. Numerical results indicate that this new hybrid model yields the much better conformity with measurements especially under the ultra-high injection pressure conditions.

  • PDF

Macroscopic Breakup Characteristics of Water Gel Simulants with Triplet Impinging Spray Jet (젤 모사 추진제 삼중 충돌 분사 제트의 거시적 분열 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.109-114
    • /
    • 2010
  • The implementation of gelled propellants systems offers high performance, energy management of liquid propulsion, storability, and high density impulse of solid propulsion. The present study focused on the macroscopic spray characteristics of liquid sheets formed by triplet impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are compared to experiments conducted on spray images which formed by triplet impinging jets concerning with airassist effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure and high pressure, closed rim pattern shape appeared by polymeric effect from molecular force and showed inactive atomization characteristics, because of extensional viscosity related by restriction of atomization process and breakup time delay of turbulence transition. As increasing mass flow rate of the air(increasing GAR), spray breakup level is also increased.

Study on Atomization Characteristics of Shear Coaxial Injectors (전단동축형 분사기들의 미립화 특성에 대한 연구)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Six shear coaxial injectors with different recess length and taper angle were manufactured. Cold-flow tests on the injectors were performed at room temperature and pressure using water and air as simulants. By changing the water mass flow rate and air mass flow rate, spray images were taken under single-injection and bi-injection. Breakup length and spray angle were analyzed from instantaneous and averaged spray images using image processing techniques. For all the injectors, the breakup length generally decreased as the momentum flux ratio increased at the same gas mass flow rate. The injectors with 7.5° taper angle usually had the longest breakup length and the smallest spray angle. When the taper angle was 15° or more, it hardly affected breakup length and spray angle. The recess length did not influence breakup length but its effect on spray angle depended on the taper angle.

Numerical Study an Drop Breakup in Air-Assisted Spray Using the TAB Model with a Modified Drop Drag Model (TAB 모텔과 수정된 액적 항력 모텔을 이용한 공기 보초 분무에서의 액적 분열에 대한 수치적 연구)

  • 고권현;유홍선;이성혁;홍기배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.87-95
    • /
    • 2002
  • The aim of this article is to perform the numerical simulation far drop drag and breakup processes in air-assisted sprays using the Taylor analogy breakup (TAB) model with a modified drop drag model, in which a random method is newly used to consider the variation of the drop's frontal area. The predicted results for drop trajectory and Salter mean diameter (SMD) were compared with experimental data and the simulation results using the earlier published models such as TAH model, surface wave instability (Wave) model, and Wave model with original drop drag model. In addition, the effects of the breakup model constant, Ck, on prediction of spray behaviors were discussed. The results shows that the TAB model with the modified drop drag model is in better agreement with experimental data than the other models, indicating the present model is acceptable for predicting the drop breakup process in air-assisted sprays. At higher Weber numbers, the smaller Ck shows the best fitting to experimental data. It should be noted that more elaborated studies is required in order to determine the breakup model constant in the suggested model in the study.