• Title/Summary/Keyword: 분무분열

Search Result 153, Processing Time 0.023 seconds

Backlight image of liquid nitrogen jet at supercritical state (초임계에서 액체 질소 분류의 역광 사진)

  • Lee, Hyunchang;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.709-712
    • /
    • 2017
  • Liquid nitrogen jet has been imaged by using backlight method. In addition to the images, simultaneously measured temperature by thermocouples has been used to investigate the role of 'Pseudo-flash-boiling' in breakup of the supercritical jet. The backlight image can provide qualitative appearance of the jet, but not the density profile for the high density of injected fluid.

  • PDF

Characterization of Liquid Phase LPG Sprays within Airflow Fields (LPG 액상분무의 분열 및 혼합특성)

  • 최재준;최동석;남창호;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.90-97
    • /
    • 2002
  • The interaction between airflow and liquid phase LfG (Liquefied Petroleum Gas) sprays was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside intake port of LPG engines with liquid injection system. The spray developments in flowing fields with the mean velocities of 5.4, 21.5 and 42.4m/s were identified by spray visualization techniques such as Mie scattering and shadowgraph. The microscopic visualization using a telescopic lens system was performed to investigate the shape and size of liquid droplets in the spray. PDA measurement was used to get 1-dimensional velocity and diameter of liquid droplets. The fast co-flows make the spray field be compact and be lead upward to the injection direction. SMD of the spray was smaller at the fast flowing field. Spray width got bigger and SMD of the spray was smaller with higher injection pressure.

Study of Grid Dependency of Sheet Atomization Model of a Pressure-Swirl Atomizer (스월형 분사기 분무 예측 모델에서의 격자 의존성 연구)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.817-824
    • /
    • 2010
  • An improved spray model of a pressure-swirl atomizer was developed and the grid dependency of the model was investigated. Since the Lagrangian-Eulerian approach was adopted for tracking droplets, very small grids could not be used. However, in order to detect swirl flow accurately, small grids were needed because of the consideration of swirl injection. In order to overcome these limitations, numerical studies were performed by using various grids with cell sizes ranging from 10.0 $\times$ 10 mm to 0.625 $\times$ 0.625 mm. From these calculated results, it was observed that the most efficient grid cell size was 1.25 $\times$ 1.25 mm.

Disintegration Mechanism of a Coaxial Porous Injector (동축형 다공성재 분사기의 분열 메커니즘)

  • Lee, Keonwoong;Kim, Dohun;Son, Min;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • In a coaxial porous injector, a gas propellant is injected through the porous cylinder surface to the liquid jet which is encircled by a porous cylinder. In this study, to observe the differences in disintegration mechanisms between a shear coaxial injector and a coaxial porous injector, cold-flow tests and 2-D axisymmetric numerical analysis have been carried out. The shadowgraph images and Sauter mean diameters were compared in similar experimental conditions, and the effects of velocity distributions at the inner injector region on the disintegration of liquid jet were investigated through the numerical calculations. As a result, in high air mass flow rate condition, the disintegration performance of coaxial porous injector is better than shear coaxial injector, in spite of a lower velocity at the inner injector region.

Glyphosate Toxicity: I. Long Term Analysis of Shikimic Acid Accumulation and Chlorophyll Degradation in Tomato Plant (Glyphosate 독성(毒性): I. Glyphosate 처리(處理)가 토마토의 Shikimic Acid의 축적(蓄積)과 엽록소(葉綠素)의 분해(分解)에 미치는 영향(影響))

  • Kim, Tae-Wan;Amrhein, Nikolaus
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.141-147
    • /
    • 1995
  • Glyphosate(N-[phosphonomethyl]glycine) applied to the assimilate-exporting leaves or sprayed to the whole plants of tomato(Lycopersicon esculentum Mil var. Moneymaker). Glyphosate induced the rapid accumulation of shikimic acid within 24 h. The accumulation of shikimic acid companied with chlorophyll loss in meristematic leaves, i.e. apical leaves. The chlorosis was acropetal in apical region of young growing leaf. The degradation of chlorophyll seems to be a secondary or tertiary effect of glyphosate. However, the level of shikimic acid accumulated was reduced except for roots and apical leaves from 5 days after treatment. The accumulating levels are considerably differed through the applicated regions. The level of shikimic acid is highest at the apical meristem 4 days after the application to 3rd old leaf.

  • PDF

Preparation of Nano Sized Indium Tin Oxide (ITO) Powder with Average Particle Size Below 30 nm from Waste ITO Target by Spray Pyrolysis Process (폐 ITO 타겟으로부터 분무열분해 공정에 의한 평균입도 30 nm 이하의 인듐-주석 산화물 분체 제조)

  • Kim, Donghee;Yu, Jaekeun
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.24-31
    • /
    • 2018
  • In this study, waste ITO target is dissolved into hydrochloric acid to generate a complex indium-tin chloride solution. Nano sized ITO powder with an average particle size below 30 nm are generated from these raw material solutions by spray pyrolysis process. Also, in this study, thermodynamic equations for the formation of indium-tin oxide (ITO) are established. As the reaction temperature increased from $800^{\circ}C$ to $900^{\circ}C$, the proportion and size of the spherical droplet shape in which nano sized particles aggregated gradually decreased, and the surface structure gradually became densified. When the reaction temperature was $800^{\circ}C$, the average particle size of the generated powder was about 20 nm, and no significant sintering was observed. At a reaction temperature of $900^{\circ}C$, the split of the droplet was more severe than at $800^{\circ}C$, and the rate of maintenance of the initial atomized droplet shape decreased sharply. The average particle size of the powder formed was about 25 nm. The ITO particles were composed of single solid crystals, regardless of reaction temperature. XRD analysis showed that only the ITO phase was formed. Remarkably, the specific surface area decreased by about 30% as the reaction temperature increased from $800^{\circ}C$ to $900^{\circ}C$.

An Experimental Study on Characteristics of Droplet Generation by Electrospraying for Highly Viscous Liquids (정전분무에 의한 고점성 액체의 액적 생성 특성에 관한 실험적 연구)

  • Kim, Sang-Su;Gu, Bon-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.604-613
    • /
    • 2002
  • Generation characteristics of electrospray droplets for highly viscous liquid have been investigated by measuring size distributions of droplets emitted from the Taylor cone using glycerol solutions with various conductivities. Because of very small volatility of glycerol, droplet sizes can be measured by an aerodynamic size spectrometer (TSI Aerosizer DSP) with negligible evaporation of droplets. For highly conducting and viscous liquid, the sizes of the droplets electrosprayed from the Taylor cone are found to be relatively insensitive to applied voltages and the electrosprays assisted by the corona discharge call produce monodisperse droplets as long as the corona intensity is not too high. Near the minimum flow rate where a liquid cone is stable, the spray tends to consist of a one -peak monodisperse distribution of drop lets. However, at high flow rates, the spray bifurcates into bimodal distributions, which are consistent with the result of the previous study for less viscous liquids than our liquids. For liquid flow rates (Q) below 1 nl/s, the measured droplet diameters by the aerosizer are in the range of 0.30 to 1.2 ${\mu}{\textrm}{m}$ for the glycerol solutions. The diameters of monodisperse droplets scale approximately with $r^*=Q_$\tau$(Q$\tau$){^1/3}$ where $r^*$ is a characteristic length and $\tau$is the electrical relaxation time of the fluid. However, when compared with several represe ntative scaling laws, the droplet diameters are two to six factors greater than those predicted by the scaling laws. This may be closely related to the combined effect of the much higher viscosity and the electrical charge on the jet breakup of glycerol so solution.

Spray Structure and Cross-section Characteristics of Pulsed Liquid Jet Injected into a Cross-flow (횡단 유동장으로 펄스 분사된 액체 제트의 분무 구조 및 단면 분포 특성)

  • Lee, In-Chul;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • Present studies of these experiments was conducted to using water, over a range of cross-flow velocities from 42 to 136 m/s, with injection frequencies from 35.7 to 166.2 Hz. In cross-flow field, main parameters of liquid jet for secondary breakup were cross-flow drag rather than pressure pulse frequency. As oscillation of the periodic pressure, liquid jet was moved up and down. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increasing.

Characteristics of Spray from Pressure-Swirl Nozzle with Different Liquid Properties and Nozzle Geometries (액체의 물성치와 노즐의 형상 변화에 따른 압력스월 노즐의 분무 특성)

  • Choe, Yun-Cheol;Jeong, Ji-Won;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1813-1820
    • /
    • 2001
  • The purpose of this study was to investigate the significant characteristics in atomization process of industrial etching spray fur the design or Precise pressure-swirl nozzles. The experiment was carried out with different viscosities and densities of the liquid. The macro characteristics of liquid spray, such as the spray angle and breakup process were captured by PMAS and the micro characteristics of liquid spray. such as droplet size and velocity measurements were obtained by PDA. The droplet axial and radial velocity and SMD were measured along axial and radial direction. The RMS of two velocities was measured along radial direction. It was found that the fluid with higher kinematic viscosity resulted in the larger SMD and the lower mean droplet velocity. And we could divide breakup processes into three regions that is atomization, non-dilution and dilution one in spray of pressure-swirl nozzle. The radial as well as axial velocity of droplet played an important role in the atomization process of higher kinematic viscosity fluid.

Effect of the Pressure and the Flow Pattern in a Sac Chamber of a Diesel Injection Nozzle on the Issued Spray Behaviors (디젤 연료분사노즐 색크실내의 압력과 유동패턴이 분류의 분열거동에 미치는 영향)

  • 김장헌;송규근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.48-53
    • /
    • 2000
  • The effects of the internal flow in a diesel injection nozzle on the atomization of the spray has been investigated experimentally. Flow visualization was made using a transparent acrylic model nozzle. And also, measurement of the sac chamber pressure was made for clartfying the effect of pressure fluctuation in the sac chamber on the wpray behaviors. The geometry of the model nozzle was scaled up 10 times of the actual nozzle and the injection pressure for the model nozzle was adjusted so as to achieve a Reynolds number at the discharge hole which was the same as the actual nozzle. Polystyrene tracers, a laser sheet light and a still/high speed video camera were used to visualize the flow pattern in the sac chamber. When the needle lift was small, the high turbulence in the sac chamber generated by the high velocity seat flow made the spread angle of the spray large. Cavitation which arose in the sky chamber induced the pressure fluctuation and then affects the spread angle of the spray.

  • PDF