• Title/Summary/Keyword: 분무분열

Search Result 153, Processing Time 0.023 seconds

Effect of Gas-liquid Ratio on Characterization of Two-Phase Spray Injected into a Cross-flow (횡단유동에 분사된 이유체 분무의 기체 액체비가 분무특성에 미치는 영향)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • The effect of two-phase spray injected into subsonic cross-flow was studied experimentally. External-mixing of two-phase spray from orifice nozzle with L/d of 3 was tested with various air-liquid ratio that ranges from 0 to 59.4%. Trajectory of spray and breakup phenomena were investigated by shadowgraph photography. Detailed spray structure was characterized in terms of SMD, droplet velocity, and volume flux using PDPA. Experimental results indicate that penetration length was increased and collision point of liquid jets approached to nozzle exit and distributions of mist-like spray were obtained by increasing air-liquid ratio.

Spray Characteristics of Impinging Injectors in Crossflows (횡방향 유동에서 충돌형 분사기의 액체제트 분무 특성)

  • Song, Yoonho;Lee, Woongu;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.949-952
    • /
    • 2017
  • Spray characteristics of the impinging injectors in subsonic crossflows were experimentally studied and compared with the plain-orifice injectors. By changing the impingement angle (60, 90, 120) which is the same orifice length to diameter ratio (L/d = 5), spray characteristics were investigated. In the view of the top view from the impinging injectors, as the impingement angle increases, the liquid column breakup length in the y-direction was decreased. On the other hand, when the impinging injector is viewed from the side view, the breakup length in the x direction is smaller than the previous plain-orifice injectors, which mean that the atomizing performance of the impingement-type injector is better than that of the single-hole orifice.

  • PDF

A Modeling about Penetration Behavior of Diesel Engine Liquid Fuel Spray (디젤기관의 분무선단 도달거리에 관한 모델링)

  • 안수길;배종욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.140-152
    • /
    • 1989
  • The study on the penetration of sprays during the initial phase of injection period, i.e. ignition delay period, in high speed small D.I. diesel engines are strongly affected by such behavior. To investigate the penetration of the sprays injected through single cylinderical orifice, a mathematical model was developed and compared with experimental results. In this model, radial heterogeneity of fuel density in the spray, transiency of injection pressure difference, and spray outrunning phenomenon were considered simultaneously. Experiments on the behaviors of sprays in the high pressure air chamber were conducted at various injection pressure differences and different levels of back air pressure. The behaviors of sprays injected into the chamber through the conventional Bosch injection pump were visualized with side stroboscopic illumination. Comparison of the experimental results with predictions from the mathematical model confirmed the validity of the model. It was also found that during the initial phase of the injection period the penetration of sprays vs. time appeared to have two transition points; one corresponded to disintegration point of liquid fuel jet, the other to the beginning of steady state injection.

Modeling of Breakup and Spray of Co-axial Swirl Injector's Outer Orifice Installed LRE combustor (액체로켓엔진에 장착되는 동축 스월형 분사기의 외측 오리피스에서의 분무 및 분열 모사)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.186-190
    • /
    • 2006
  • This study was performed to investigate the characteristics of a co-axial swirl injector. Especially to predict the initial liquid sheet thickness and spray cone angle of an outer orifice a concept of effective area was introduced from hydraulic analysis. In addition, the parameters determining the characteristics of a co-axial swirl injector were re-defined around outer orifice. The calculated results-SMD, spray cone angle, and spray thickness agreed well with the test results qualitatively.

  • PDF

Spray Characteristics of a Liqud-Liquid Swirl Coaxial Injector (액체-액체 스월 동축형 인젝터의 분무특성)

  • Kim Dong-Jun;Im Ji-Hyuk;Han Poong-Gyoo;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.147-150
    • /
    • 2006
  • The influences of injection conditions and recess configuration of liquid-liquid swirl coaxial injector on spray characteristics were investigated. The characteristics of the coaxial spray in internal mixing injection region were mai y controlled by the merging phenomenon and momentum balance between two liquid sheets, but those in internal mixing injection region were influenced by the impingement phenomenon as well as momentum balance between two liquid sheets.

  • PDF

Spray Characteristics of a Liquid-Liquid Swirl Coaxial Injector Part I : Effect of Injection Condition (액체-액체 스월 동축형 인젝터의 분무특성 Part I : 분사조건에 따른 특성)

  • Kim, Dong-Jun;Im, Ji-Hyuk;Han, Poong-Gyoo;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2006
  • The influences of injection conditions and recess configuration of liquid-liquid swirl coaxial injectors on spray characteristics were investigated. The characteristics of the coaxial spray in internal mixing injection region were mainly controlled by the merging phenomenon and momentum balance between two liquid sheets, but those in internal mixing injection region were influenced by the impingement phenomenon as well as momentum balance between two liquid sheets.

Development and Validation of Spray Model of Coaxial Swirl Injector Installed in Liquid Propellant Rocket Engine (액체로켓엔진에 장착되는 스월 분사기의 분무 모델 개발 및 검증)

  • Moon, Yoon-Wan;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.37-50
    • /
    • 2007
  • This study investigated the characteristics of spray generated by a liquid coaxial swirl injector used in a combustor of the liquid rocket engine. The linear stability analysis considered long and short wave was introduced in liquid sheet breakup. Through the hydrodynamic analysis the initial liquid sheet thickness spray angle and injection velocity were predicted. To evaluate the effect of turbulence model standard $k-{\varepsilon}$ and RNC $k-{\varepsilon}$ model were applied to numerical calculation and it was known that RNC $k-{\varepsilon}$ model was more applicable to predict spray characteristics. On the basis of this evaluation validation of the developed model was performed with swirl injector installed in LPRE and the predicted results of breakup length, spray angle, and SMD agreed well with experiments qualitatively and quantitatively.

A Study on the Characteristics of Liquid Jet in Crossflows Using Elliptical Nozzles (타원형 노즐을 이용한 횡단류 유동에서 액체제트 특성 연구)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.320-324
    • /
    • 2017
  • Effect of elliptical orifice on the spray characteristics of liquid jet ejecting into subsonic crossflows were experimentally studied. Circular/elliptical plain-orifice injectors, which had different ratios of the orifice length to diameter and major axis to minor axis, were used for transverse injection. Compared with the previous research, breakup lengths of elliptical nozzles are shorter than circular nozzles at all experimental condition. Cavitation/hydraulic flip are considered as a reduction in the breakup length at all circular/elliptical nozzle. In the case of liquid column trajectories, major axis which was placed to the crossflows, increases the frontal area of the liquid column exposed to the crossflows. Hence, the aerodynamic force exerted on the jet is increased and the penetration depth is reduced.

  • PDF