• Title/Summary/Keyword: 분무길이

Search Result 128, Processing Time 0.022 seconds

Disintegration and Spreading Behavior of the Spray emanating from a Liquid-thruster Injector (액체추력기 인젝터로부터 발생하는 분무의 분열 및 확산 거동)

  • Kim, Jin-Seok;Jung, Hun;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.113-116
    • /
    • 2008
  • Pseudo-3D Spatial distribution of spray droplets is investigated by using Dual-mode Phase Doppler Anemometry (DPDA) in order to examine the disintegration and spreading behavior of spray exiting from liquid-thruster injector. Spray injected from nozzle orifice with length-to-diameter ratio $(L/d_o)$ of 1.67 and at the injection pressure of 27.6 bar is aligned to the vertical. Vertical and horizontal mean velocities of droplets, Arithmetic Mean Diameter (AMD), Sauter Mean Diameter (SMD), and volumetric flux decrease as droplets travel from center/upstream toward outer region/downstream of spray.

  • PDF

Spray characteristics on mixing region scale of twin fluid atomizer (이류체 분사노즐의 혼합영역 형상에 따른 분무특성)

  • 김병문;김혁주;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2147-2159
    • /
    • 1991
  • The effects of principal dimensions of internal mixing twin-fluid atomized and operating conditions on the atomizing characteristics are experimentally investigated. The tests are conducted over the wide range of air/liquid ratio to predict influences of the diameter and length of nozzle, contacting angle between air and liquid in the mixing chamber, and air orifice diameter on the mean drop size(SMD), spray angle, distribution of drop size, and spray dispersion, And also, initial distribution of liquid column by air stream within the mixing chamber are observed through the transparent nozzles. A He-Ne laser particle sizer(MALVERN Model 2604) was used to measure the Sauter.s mean diameter( $D_{321}$) and droplet sizes distribution. In this experiment the air/liquid ratio, mixing length and nozzle diameter have a great influence on SMD, spray angle, droplet sizes distribution and spray dispersion.

Study on Spray Characteristics of GCSC Injector with Recess in High Pressure Condition (고압조건에서 기체-액체 분사기의 리세스에 따른 분무 특성 연구)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Choi, Hwan-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.57-60
    • /
    • 2011
  • The spray characteristics according to the recess length of the GCSC injector and the change of momentum flux ratio(MFR) of the gas and the liquid have been examined through high pressure cold flow test using a high pressure chamber. The liquid in this experiment was water, and the gas was nitrogen. The spray images were taken by a back-lit strobe imaging technique. Results showed that the spray was a wide hollow cone at the lower MFR(liquid velocity was fixed) and the spray became a narrow solid cone as the MFR was increased. And the injector with short recess length produced a narrow solid cone at the higher MFR.

  • PDF

The Fuel Spray Structure of High Pressure Gasoline Injector in a Constant Volume Chamber (정적챔버내의 고압 가솔린 인젝터의 연료분무구조)

  • 귄의용;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.10-17
    • /
    • 2000
  • This work presents an investigation of aerodynamic characteristics of fuel spray injected from a high pressure hollow cone swirl injector into a constant volume chamber. Laser tomography visualization was used to interrogate the fuel and air mixing characteristics and the effect of chamber pressure and temperature increase was analyzed, Preliminary results on spray development showed that mixing effect tends to increase with the increase of injection pressure and chamber gas pressure yielding a decrease of spray penetration and an attenuation of well-defined vortex structure. Topological analysis of the spray structure has been performed to initiate the understanding of mixing and vaporization process. For the present experimental conditions fuel injection pressure and chamber gas pressure appear as the dominant factors which govern the transient mixing characteristics. Moreover spray atmixation characteristics are improved by increasing chamber gas temperature.

  • PDF

Analysis of the Impinging Spray Behavior Accompanying with Change of Phase (상변화를 동반한 충돌분무의 거동해석)

  • Song, Hong-Jong;Cha, Keun-Jong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.852-859
    • /
    • 2000
  • The emission in the exhaust gas from diesel engine is effected by the fuel spray characteristics. The spray of D.I. diesel engine impinges on a piston cavity and a cylinder wall. It is very important to know exactly the distribution and behavior of the spray inside cylinder. The objective of this study is to develop more accurate evaporation model. The EPISO code was used to analyze the flow characteristics in the engine. The Wakil model and the Faeth model are applied to the EPISO code to analyze the behavior of impinging spray. And also experimental and numerical analysis were carried out. The spray behavior characteristics were investigated by changing injection pressure, ambient pressure and temperature. The behavior of impinging spray was strongly effected by the change of ambient pressure and temperature. The effects of evaporation and rebounding droplet should be considered.

Numerical Analysis of the Formation of New Impinging Spray in the Combustion System (디젤연소실에서 새로운 충돌분무 형성에 대한 수치적 고찰)

  • Ryoo, Sung-Mok;Cha, Keun-Jong;Kim, Duck-Jool;Park, Kweonha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1625-1634
    • /
    • 1998
  • The objective of this study is to establish geometric guidelines for design of impaction parts prepared for removing undesirable effects of fuel deposition on a wall in small direct-injection diesel engines. In order to get the guidelines a new wall geometry is introduced and assessed, which has a flat top and a slant edge. The size of the flat top and the angle of the slant edge are varied and tested in same chamber condition, then their effects on spray dispersions and drop sizes are discussed. The results show that the case of 3.0mm flat top and $60^{\circ}$ edge angle gives the best spray characteristics for a small combustion chamber in the test conditions chosen in this paper.

Spray Characteristics of Two-Phase Flow Jets into a Subsonic Crossflow (아음속 횡단류로 분사되는 이상유동 제트의 분무특성)

  • Lee, Keunseok;Lee, Wongu;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2019
  • An experimental study on the spray characteristics of aerated-liquid jets discharged from effervescent injectors to a subsonic crossflow was conducted to investigate effects of a gas to liquid mass ratio (GLR) and a ratio of the orifice length to the diameter (L/d). The present effervescent injectors consist of a plain orifice injector and an aerator. To analyze breakup length and spray trajectory, instantaneous spray images were taken by a high speed camera. As the GLR increased, the spray penetration became higher under the same liquid mass flow rate and the breakup length became shorter due to the bubble expansion or the annular liquid film breakup. To predict the spray trajectory of two-phase flow jets into the crossflow, the homogeneous and the separated flow models were compared.

A Study on the Two-Phase Flow Transition and Atomization Characteristics in Effervescent Injectors (기체주입식 분사기의 이상유동 변화와 분무특성에 관한 연구)

  • Lee, Kangyeong;Jung, Hadong;Kang, Cheolwoong;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.144-154
    • /
    • 2022
  • Gas injection is a technique applied to improve throttling in liquid rocket engines and atomization in effervescent injectors. When a gas is injected into a liquid, it creates a two-phase flow inside the injector. The changes (bubbly flow, slug flow, annular flow, etc.) in the two-phase flow affect the injector's spray characteristics. In this study, cold-flow tests were performed by using three injectors with different orifice diameters and four aerators with different gas injection hole diameters. The experiments were done by changing the thrust ratio (liquid mass flow rate ratio) and gas-liquid mass flow rate ratio. Two-phase flow transition, breakup length, and discharge coefficient according to the injector/aerator design and flow conditions were investigated in detail.

A Study on the Measurement of Break-up Length for the Diesel Sprays (디젤분무의 분열길이 측정에 관한 연구)

  • Jang, S.H.;Ra, J.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.22-28
    • /
    • 1999
  • The injected liquid does not break-up instantly after injection for diesel engine. There is some unbroken portion, which is the liquid core(The length of liquid core is called the break-up length) in the spray. If the liquid core is longer than the depth of the bowl in the small DI diesel engine, the liquid core impinges on the surface of the piston. Once the liquid core impinges on the surface, it cannot ignite or burn rapidly and thus prolongs burning time with a degradation in thermal efficiency. The break-up length of a diesel spray in a compressure vessel was measured by an electric resistance method, A voltage was applied between the nozzle and screen, bar, needle electrode inserted at various axial and radial positions into atomizing sprays. As a result, a current flows not only in the region of liquid core but also through the droplets of the spray. It is found that the break-up length measured with screen electrode is overestimated. The break-up length of the spray is found to be proportional to the square root of the density ratio of fuel and surrounding gas. The break-up length of the spray decreases as the injection pressure and the back pressure increase.

  • PDF

Spray Characteristics of Nonimpinging-type Injector According to the Injection Pressure Variation and Angular Direction of Orifices (분사압력 및 분사각에 따른 비충돌형 인젝터의 분무특성)

  • Jung, Hun;Kim, Jong-Hyun;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • A water-flow test was carried out for the nonimpinging-type injector to be equipped on 70 N-class liquid-rocket engine under development. Breakup patterns of injector-spray transit from a smooth jet to wavy one as the injection angle increases, whereas spray-breakup lengths are inversely proportional to the injection pressure. It is confirmed that there exist ruffles on the surface of liquid column, which could be caught through the instantaneous spray images captured by high-speed camera. A phenomenon of spray shedding amplified at the specific pressure level of 0.93 MPa was an unexpected behavior of the injected stream and it is to be investigated further.