• Title/Summary/Keyword: 분말화

Search Result 1,566, Processing Time 0.023 seconds

Synthesis Behavior of Ti-25.0~37.5at%Si Powders by In situ Thermal Analysis during Mechanical Alloying (기계적 합금화과정에서의 in situ 열분석에 의한 Ti-25.0~37.5at%Si 분말의 합성거동)

  • Byun Chang Sop;Hyun Chang Yong;Kim Dong Kwan
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.305-309
    • /
    • 2004
  • Mechanical alloying (MA) of Ti-25.0~37.5at%Si powders was carried out in a high-energy ball mill, and in situ thermal analysis was also made during MA. In order to classify the synthesis behavior of the powders with respect to at%Si, the synthesis behavior during MA was investigated by in situ thermal analysis and X-ray diffraction (XRD). In situ thermal analysis curves and XRD patterns of Ti-25.0~26.1at%Si powders showed that there were no peaks during MA, indicating $Ti_{5}$ $Si_3$ was synthesised by a slow reaction of solid state diffusion. Those of Ti-27.1~37.5at%Si powders, however, showed that there were exothermic peaks during MA, indicating $_Ti{5}$ $Si_3$ and$ Ti_3$Si phase formation by a rapid exothermic reaction of self-propagating high-temperature synthesis (SHS). For Ti-27.1~37.5at%Si powders, the critical milling times for SHS decreased from 38.1 to 18.5 min and the temperature rise, ΔT (= peak temperature - onset temperature) increased form $19.5^{\circ}C$ to $26.7^{\circ}C$ as at%Si increased. The critical composition of Si for SHS reaction was found to be 27.1at% and the critical value of the negative heat of formation of Ti-27.1at%Si to be -1.32 kJ/g.

Synthesis Behavior of Ti-50.0 ~ 66.7at%Si Powders by In situ Thermal Analysis during Mechanical Alloying (기계적 합금화과정에서의 in situ 열분석에 의한 Ti-50.0~66.7at%Si 분말의 합성거동)

  • Byun Chang Sop;Lee Sang Ho;Lee Wonhee;Hyun Chang Yong;Kim Dong Kwan
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.310-314
    • /
    • 2004
  • Mechanical alloying (MA) of Ti-50.0~66.7at%Si powders was carried out in a high-energy ball mill, and in situ thermal analysis was also made during MA. In order to classify the synthesis behavior of the powders with respect to at%Si, the synthesis behavior during MA was investigated by in situ thermal analysis and X-ray diffraction (XRD). In situ thermal analysis curves and XRD patterns of Ti-50.0~59.6at%Si powders showed that there were exothermic peaks during MA, indicating TiSi, $TiS_2$, and $Ti_{5}$ $Si_4$ phase formation by a rapid exothermic reaction of self-propagating high-temperature synthesis (SHS). Those of Ti-59.8~66.7 at%Si powders, however, showed that there were no peaks during MA, indicating any Ti silicide was not synthesised until MA 240 min. For Ti-50.0~59.6at%Si powders, the critical milling times for SHS increased from 34.5 min to 89.5 min and the temperature rise, $\Delta$T (=peak temperature-onset temperature) decreased form $26.2^{\circ}C$ to $17.1^{\circ}C$ as at%Si increased. The critical composition of Si for SHS reaction was found to be 59.6at% and the critical value of the negative heat of formation of Ti-59.6at%Si to be -1.48 kJ/g.

Evaluation on the Deterioration and Resistance of Cement Matric due to Seawater Attack (시멘트 경화체의 해수침식에 의한 성능저하 및 저항성 평가)

  • 문한영;이승태;김홍삼
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2001
  • Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of 5 types of cement matrices. From the results of compressive strength and length change, it was found that blended cement mortars due to mineral admixtures, were superior to portland cement mortars with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the peak intensity ratio of low heat portland cement(LHC) paste, in portland cement pastes, had better results, and so did that of blended cement Paste. Pore volume of pastes by mercury intrusion porosimetry method demonstrated that total pore volume of ordinary portland cement(OPC) paste had a remarkable increase comparing with that of other pastes. In case of immersion of artificial seawater, the use of ground granulated blast-furnace slag and fly ash, however, showed the beneficial effects of 56% and 32% in reduction of total pore volume, respectively.

Effect of Water Volume and Relaxation Time in the Design of Nano Shock Absorbing Damper Using Silica Particle (실리카 분말을 이용한 나노 충격완화 장치의 설계에서 작동 유체 영향과 복원 시간에 대한 연구)

  • 문병영;김병수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.286-292
    • /
    • 2003
  • In this study, new shock absorbing system was proposed using silica gel particles according to the nano-technology. For the design and real application of the proposed damper, an experimental investigations are carried out using colloidal damper, which is statically loaded. The porous matrix is composed from silica gel(labyrinth architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis were described. Iufluence of the water volume and particle diameters upon the reversible colloidal damper hysteresis was investigated. Also, influence of the relaxation time on the hysteresis of the damper was investigated. As a result, the proposed new shock absorbing damper is proved as an effective one, which can be replaced for the conventional hydraulic damper.

Effect of pH Variation on the Sintering of Hydroxyapatite Powders Prepared by the Wet Method and their Mechanical Properties (습식법으로 제조한 수산화아파타이트 분말의 소결과 그 기계적 성질에 미치는 pHqus화의 영향)

  • 정형진;김병호;신용규
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.305-314
    • /
    • 1989
  • Effect of pH variation in starting solution for the making of hydroxyapatite powder was studied in relation to the sinterability of the powder and their mechanical properties of the sintered hydroxyapatite ceramics. The sinterability of hydroxyapatite powder prepared at different pH was found to be improved with increase in pH value of the starting solutions. Thus the powders prepared from the higher pH solutions including 10.5, 11.0 and 11.5 could be well densified almost upto theoretical density by firing for 1 hr at 1,00$0^{\circ}C$. But the powder based on pH 10 exhibited less sinterability even being fired at much higher temperature of 1,10$0^{\circ}C$, it gave only 90-95% of theoretical density. On the other hand the powder prepared on the lowest pH value 9.5 could not be well densified and it could obtain only 78% of theoretical density even by firing at 1,30$0^{\circ}C$ for 1hr. It was found that prismatic crystals of whitlockite were always included in the sintered bodies based on the lower pH values as a minority crystalline phase together with the major crystalline phase of hydroxyapatite and its inclusion might impair the sinterability of powder. However in the case of the higher pH, the powder contained only hydroxyapatite as a crystalline phase on sintering without any minorities. The sphere shape of crystals might help effectively the densification of the bodies. The best mechanical properties could be obtained from the body of pH 11 sintered at 1,10$0^{\circ}C$, which gave 99.5% of theoretical density, 662Kg/$\textrm{mm}^2$ of vickers hardness and 1,352Kg/$\textrm{cm}^2$ of diameteral compression strength.

  • PDF

Dry Milling Process of Barley Kernels (건식 보리 제분공정에 관한 연구)

  • Mok, Chul-Kyoon;Lee, Sang-Hyo;Lee, Hyun-Yu;Nam, Young-Jung
    • Applied Biological Chemistry
    • /
    • v.28 no.3
    • /
    • pp.115-123
    • /
    • 1985
  • The milling characteristics of barley of various moisture content were investigated using Brabender Grain Hardness Tester (GHT) to set up the optimum conditions of dry milling process. The optimum GHT clearance were 1/0-1/10 for-10+12 mesh particles, 0/5-0/15 for-12+18 mesh, and 0/-15 for -18 mesh. The grain hardness of barley kernel increased with moisture content and the grindability, on the other hand, decreased. The consumed electric energy in milling increased with moisture content and showed the maximum value at the moisture content of 14.04%. The optimum conditions of dry milling of barley were 0/-5 GHT clearance and 12.80% moisture content and the consumed electric energy was 92.41Kwh for the production of 1,000kg of -18 mesh particles.

  • PDF

Evaluation of Anti-Corrosion Performance of FRP Hybrid Bar with Notch in GGBFS Concrete (GGBFS 콘크리트에 매립된 Notch를 가진 FRP Hybrid Bar의 부식저항성 평가)

  • Oh, Kyeong-Seok;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.51-58
    • /
    • 2016
  • Concrete structure is a construction material with durability and cost-benefit, however the corrosion in embedded steel causes a critical problem in structural safety. This paper presents an evaluation of chloride resistance and pull-off performance with various corrosion level. For the work, OPC(Ordinary Portland Cement) concrete and GGBFS(Ground Granulated Blast Furnace Slag) concrete are prepared with normal steel. Artificially notch induced FRP Hybrid Bar is also prepared and embedded in OPC concrete and accelerated corrosion test is performed. Through the test, FRP Hybrid Bar with notch is evaluated to have insignificant effect on pull-off capacity when corroded steel shows only 21% level of pull-off capacity. Furthermore GGBFS concrete with normal steel shows over 70% level of pull-off capacity due to reduced corrosion currency.

Strength and Pore Characteristics of Alkali-activated Slag-Red Mud Cement Mortar used Polymer According to Red Mud Content (레드머드 대체율에 따른 폴리머 혼입 알칼리활성화 슬래그-레드머드 시멘트모르타르의 강도 및 기공특성)

  • Kwon, Seung-Jun;Kang, Suk-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.26-33
    • /
    • 2016
  • The alkali-slag-red mud(ASRC) cement belongs to clinker free cementitious material, which is made from alkali activator, blast-furnace slag(BFS) and red mud in designed proportion. This study is to investigate strength and pore characteristics of alkali-activated slag cement(NC), clinker free cementitious material, and ordinary portland cement(C) mortars using polymer according to red mud content. The results showed that the hardened alkali-activated slag-red mud cement paste was mostly consisted of C-S-H gel, being very fine in size and extremely irregular in its shape. So the hardened ASRC cement paste has lower total porosity, less portion of larger pore and more portion of smaller pore, as compared with those of hardened portland cement paste, and has higher strength within containing 10 wt.(%) of alkali-activated slag cement(NC) substituted by red mud.

Production of Fine Cobalt Metal Powders from Stellite Scrap (Stellite 스크랩으로 부터 Co 미분말의 제조)

  • 박문경;신동성
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 1994
  • Fine cobalt metal powders was produced from domestic Stellite scrap by decomposing it with molten sodium hydroxide. Complete decomposition of the scrap could be obtained with the weigth ratio of sodium hydroxide to Stellite being about 2 at the temperature ranges of $750~800^{\circ}C$ for an hour. The cobalt-bearing compound was identified as $Co_2O_3{\dot}H_2O$ by X-ray analysis and D.T.-T.G.a.. The compound was then digested in HCI to form cobalt chloride, and after iron removal by adjusting the pH of the solution, cobaltous or cobaltic hydroxide was precipitated at the pH of about 13 or 4, respectively. The precipitates were reduced by hydrogen in the temperatures of $400~500^{\circ}C$ to fine cobalt powders of high purity with the size of 1.0 to $1.5\mu\textrm{m}$. The recovery of cobalt from Stellite scrap was about 75~86% by weight.

  • PDF

Synthesis of SiC from the Wire Cutting Slurry of Silicon Wafer and Graphite Rod of Spent Zinc-Carbon Battery (폐 반도체 슬러리 및 폐 망간전지 흑연봉으로부터 탄화규소 합성)

  • Sohn Yong-Un;Chung In-Wha;Sohn Jeong-Soo;Kim Byoung-Gyu
    • Resources Recycling
    • /
    • v.12 no.3
    • /
    • pp.25-30
    • /
    • 2003
  • The synthesis of SiC used for the parts of the gas turbine and the heat exchanger, was carried out. In this study, wire cutting slurry of silicon wafer and the graphite rod of spent zinc-carbon battery were applied to the starting materials for the synthesis. The powders of Si or Si+SiC were obtained from the waste material by filtration, gravity separation and magnetic separation. Graphite powder was produced by dismantling, grinding and gravity separation from spent zinc-carbon battery. The synthesis of SiC could be completed from the mixture powders of Si and C or Si+SiC and C at the condition of equivalent ratio of Si and C, atmosphere of Ar or vacuum, temperature of above 1$600^{\circ}C$ and 2 hours reactions. The purity of synthesized Si-C was above 99%.