• Title/Summary/Keyword: 분말단조

Search Result 52, Processing Time 0.025 seconds

Development of an Automated Die Design System for Powder Forging (분말단조용 금형설계 자동화 시스템의 개발)

  • 박종옥;김길준;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1029-1032
    • /
    • 2001
  • The purpose of this paper is to establish an automated die design system for compacting and sizing process required in Powder Metallurgy. Though the Powder Metallurgy(P/M) is a practical and economical forming technology, it needs long time and many trials and errors for die design. Such a problem can be solved by introduction of the automated die design system for P/M. In order to establish the system, collecting, classifying, and systematizing related knowledges from the experts in industries, books, and papers were performed. The system was constructed by AutoLISP, the language operated in AutoCAD atmosphere. This language can efficiently support for user to work on drawings. There are three modules ; P/M part specification input module, P/M part design module, and Die design module. A part for vehicle was applied to the system and satisfied results were achieved.

  • PDF

A Study on Forging Effect of Cup-Shaped Powder Forging Product According to the Shape of Preforms (컵형상 분말단조품의 예비성형체 형상에 따른 단조효과에 관한 연구)

  • Park, Jong-Ok;Kim, Young-Ho;Cho, Jin-Rae;Lee, Jong-Heun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.63-68
    • /
    • 2000
  • The purpose of this paper is to compare the forging effects according th the shape of preforms of cup shaped powder forging product, and extend the application of powder forging technology to more complicated cup-shaped products like pistons. In order to this, preforms are provided by compacting, sintering, and machining in various shapes, then forged to final shape of products. The workability for sintered aluminium powder material is examined. Density and strain loci of forged products are compared, and the most effective shape of preform is proposed. The preform for a piston of 50mm in diameter is provided and hot forged to final product.

  • PDF

Estimaion of the sintering and forging characteristics of the W/Cu nanocomposite powders produced by the spray conversion process (Spray conversion 법으로 제조된 W/Cu 나노복합분말의 소결특성 및 단조특성 평가)

  • 김태형;노준웅;김은표
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.36-36
    • /
    • 2002
  • 최근 한국기계연구원에서 개발된 Mechanochemical process (MCP)는 Spray conversion 법에 의하여 나노크기의 W/Cu 복합 분말을 제조하는 방법으로서, 현재 (주)나노테크에서 산업화를 위한 시험/개발이 진행 중이다. 이 방법에 의하여 W /1 0 ~ 40wt. %Cu 조성의 초미렵 W/Cu 복합 분말의 양산화가 가능하게 됨으로써, 나노복합분말을 사용한 초미립 W/Cu 합금의 소결 제조 연구 역시 나 노태크에서 분말사업화와 동시에 수행되고 있다. 현재 Spray conversion 법으로 제조되고 있는 W/Cu 나노복합분말 및 그 소결체는 Cu의 조성범 위에 따라 민수용 및 군수용 제품으로의 적용이 시도되고 있으며, 각기 특성향상을 목표로 각 적용 분야에서 요구되는 제반 성능에 대한 검토가 이루어지고 있다. 특히 군수용의 목적으로 사용될 경우, 정적 및 동적부하상태에서 재료의 균일한 변형이 가장 중요한 특성이다. 현 개발품의 경우, 일반 W 빛 Cu 원료에 비하여 상대적으로 높은 순도의 원료를 사용하였기 때문에 분말 및 소재상태 에서의 순도가 높아서, 연성을 저하시키는 것으로 알려진 기지상내 합금원소 또는 interface 게재물 이 존재할 가능성이 매우 낮다. 또한 초미립 W 입자들과 Cu 상의 혼합도가 극대화된 상태이기 때문에 상대적으로 저옹에서도 완전치밀화된 미세조직을 얻을 수 있는데, 이는 분말상태의 균일한 미세구조를 유지할 수 있으며, 동시에 W 업자간의 과도한 neck 형성을 방지함으로써 기계적 변형시 재료의 연성 향상이 기대된다. 이러한 W/Cu 나노복합분말 소결체의 특성은 균일한 밀도분포와 동시에 과도한 동적 부하상태에서 균일한 변형이 보장되어야만 하는 특정 군수용 목적에 잘 부합하는 것으로 판단된다. 본 고에서는 상기한 W/Cu 나노복함분말을 사용하여 균일한 미세구조를 가지는 완전치밀화된 소결재를 제조하는 과정과 제조된 소결재를 향후 군수용 제품에 척용시키기 위하여 진행된 단조특성에 대한 연구결과틀을 재료의 미세구조척 관점에서 논의하였다.

  • PDF

forming of High Density Bevel Gear for Industrial Machinery (산업기계용 고밀도 Bevel Gear 제품화를 위한 성형성 연구)

  • 임성주;윤덕재;최석우;박훈재;김승수;나경환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • This study is concerned with the cold forging of sintered preform by rotary forging process and direct powder compacting process. An experiment has been carried out using the rotary powder forging press (500kN) which had been designed and equipped with the rotational conical die inclined to the central axis of the press at certain angle The effect of process variables was observed and measured by several mechanical test, such as hardness distribution density, and microstructure of the specimens. It is found that the highly densified P/M parts can be obtained and this process is very effective for improving quality of the powder products.

  • PDF

Development of Bevel Gear by Powder Forging Process (분말단조에 의한 베벨기어의 성형 기술 연구)

  • 이정만
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.258-267
    • /
    • 1997
  • The powder forging process is an attractive manufacturing route for bevel gears. It offers beneficial material utilization and the minimization of finishing operations over that of conventional hot forging. The paper describes the process conditions for the powder forging of bevel gear, for example, powder alloy design, preform design, deformation of sintered preform, forging processes. The characteristics of prototype gear are investigated with microstructure, the density distribution, surface roughness of tooth, bending strength test of tooth, etc. The results of the bending strength test may prove the mechanical properties of powder forged gear.

  • PDF

Thermo-Elasto-Plastic Finite Element Analysis of Powder Hot Forging (열간분말단조 공정의 열탄소성 유한요소해석)

  • 김형섭
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.83-89
    • /
    • 1997
  • A finite element analysis to solve the coupled thermomechanical problem in the plane strain upsetting of the porous metals was performed. The analysis was formulated using the yield function advanced by Lee and kim and developed using the thermo-elasto-plastic time integration procedure. The density and temperature dependent thermal and mechanical properties of porous metals were considered. The internal heat generation by the plastic deformation and the changing thermal boundary conditions corresponding to the geometry were incorporated in the program. The distributions of the stress, strain, pressure, density and temperature were predicted during the free resting period, deformation period and dwelling period of the forging process.

  • PDF

Experimental Research of Powder Forging for Sub-Scale Connecting rods (커넥팅 로드의 분말단조를 위한 소결 및 단조특성의 실험적 연구)

  • 이동원;이정환;정형식;이영선;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.149-158
    • /
    • 1994
  • Powder forged Connecting Rods have become attractive for use in automotive engines. The powder forging process offers beneficial material utilization as well as the minimization of finishing operations over that of conventionally forged rods. In the present work, the sintering behavior of Fe-2Cu-0.6C, optimum preform design and forgeability of various forging variables were investigated. Our data were generated using a newly proposed sub-scale con-rod developed specifically to simulate the powder forging process. We obtain optimum condition of sintering and powder forging process.

  • PDF

A Study on the Forming Technologies for a Motor Piston and Improvement of Mechanical Properties (자동차용 피스톤의 성형기술과 기계적 성질의 개선에 관한 연구)

  • 김길준;박종옥;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.842-845
    • /
    • 2000
  • The purpose of this paper is to investigate the influences on mechanical properties of motor pistons manufactured by casting, conventional forging and powder forging, using the comparison of characteristics like microstructure, hardness, tensile strength, and elongation. To form conventional forging piston, the experiment of visioplasticity was performed. As the model material, plasticine was used. To form powder forging piston, the shape of piston was simplified as simple cup shape. Material properties like workability, density variation before and after forging, and strain loci of material during forging were investigated. Powder forging and conventional forging technologies were effective to gain dense microstructure. In powder forging, distribution of such dense microstructuer was uniform. For hardness, pistons from powder forging and conventional forging technologies were much better than that from casting. For tensile strength and elongation, powder forging and conventional forging technologies were also advantageous.

  • PDF