Communications of the Korean Institute of Information Scientists and Engineers
/
v.24
no.4
s.203
/
pp.24-30
/
2006
온톨로지의 기본개념, 응용 분야 및 학습 단계에 대하여 간단하게 설명하였고, 온톨로지 학습단계에서 전문 분야의 개념간 계층 관계 학습 방법에 대하여 자세하게 알아보았다. 전문분야 개념을 표현하는 전문 용어 사이의 계층 관계를 학습하는 방법은 크게 규칙 기반 방법, 통계 기반 방법 그리고 용어의 전문성과 유사도를 이용하는 방법으로 나눌 수 있다. 규칙 기반 방법은 비교적 정확한 결과를 얻을 수 있는 장점이 있지만 재현율이 낮은 단점이 있다. 기존은 통계 기반 방법에서는 재현율이 높은 장점이 있지만 정확률이 낮은 단점이 있다. 또한 이 방법에서는 순수하게 통계 정보만 이용하기 때문에 오류에 대한 분석이 어려운 단점이 있다. 용어의 전문성과 용어간 유사도를 이용한 방법에서는 용어의 전문성을 이용하여 기존의 계층 구조에서 상위에 후보를 선택하고, 용어간 유사도를 이용하여 선택한 후보를 정렬하여 최적의 후보를 찾는다. 이 방법은 상위어 선정 과정을 두 단계로 분리하여 수행하기 때문에 오류 분석이 용이한 장점이 있다. 향후 온톨로지 학습 과정에서 계층 관계뿐 아니라 인과 관계 및 다양한 관계의 학습과 관련된 연구가 진행되어야 한다.
Proceedings of the Korea Multimedia Society Conference
/
2002.05c
/
pp.325-329
/
2002
본 연구에서는 할선법과 모멘트를 조합한 학습알고리즘의 신경망 기반 독립성분분석 기법을 제안하였다. 제안된 알고리즘은 할선법과 모멘트에 기초를 둔 고정점 알고리즘의 독립성분분석 기법이다. 여기서 할선법은 독립성분 상호간의 정보를 최소화하기 위해 negentropy를 최대화는 과정에서 요구되는 1차 미분에 따른 계산량을 줄이기 위함이고, 모멘트는 최대화 과정에서 발생하는 발진을 억제하여 보다 빠른 학습을 위함이다. 제안된 기법을 256×256 픽셀의 8개 지문영상에서 임의 혼합행렬에 따라 발생되는 혼합지문들을 각각 대상으로 시뮬레이션한 결과, 할선법만에 기초한 기법보다 우수한 분리성능과 빠른 학습속도가 있음을 확인하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.4
/
pp.826-832
/
2016
In this paper, we propose a tongue diagnosis system for determining the presence of specific taste crack area as a first step in the digital tongue diagnosis system that anyone can use easily without special equipment and expensive digital tongue diagnosis equipment. Training DB was developed by the Haar-like feature, Adaboost learning on the basis of 261 pictures which was collected in Oriental medicine. Tongue candidate regions were detected from the input image by the learning results and calculated the average value of the HUE component to separate only the tongue area in the detected candidate regions. A tongue area is separated through the Connected Component Labeling from the contour of tongue detected. The palate regions were divided by the relative width and height of the tongue regions separated. Image on the taste area is converted to gray image and binarized with each of the average brightness values. A crack in the presence or absence was determined via Connected Component Labeling with binary images.
Kim, Sung-ju;Kim, Seonhoon;Park, Jinseong;Yoo, Kang Min;Kang, Inho
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.320-325
/
2021
BERT는 사전 학습 단계에서 다음 문장 예측 문제와 마스킹된 단어에 대한 예측 문제를 학습하여 여러 자연어 다운스트림 태스크에서 높은 성능을 보였다. 본 연구에서는 BERT의 사전 학습 문제 중 다음 문장 예측 문제에 대해 주목했다. 다음 문장 예측 문제는 자연어 추론 문제와 질의 응답 문제와 같이 임의의 두 문장 사이의 관계를 모델링하는 문제들에 성능 향상을 위해 사용되었다. 하지만 BERT의 다음 문장 예측 문제는 두 문장을 특수 토큰으로 분리하여 단일 문자열 형태로 모델에 입력으로 주어지는 cross-encoding 방식만을 학습하기 때문에 문장을 각각 인코딩하는 bi-encoding 방식의 다운스트림 태스크를 고려하지 않은 점에서 아쉬움이 있다. 본 논문에서는 기존 BERT의 다음 문장 예측 문제를 확장하여 bi-encoding 방식의 다음 문장 예측 문제를 추가적으로 사전 학습하여 단일 문장 분류 문제와 문장 임베딩을 활용하는 문제에서 성능을 향상 시키는 Bi-Cross 사전 학습 기법을 소개한다. Bi-Cross 학습 기법은 영화 리뷰 감성 분류 데이터 셋인 NSMC 데이터 셋에 대해 학습 데이터의 0.1%만 사용하는 학습 환경에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 5점 가량의 성능 향상이 있었다. 또한 KorSTS의 bi-encoding 방식의 문장 임베딩 성능 평가에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 1.5점의 성능 향상을 보였다.
Annual Conference on Human and Language Technology
/
2011.10a
/
pp.107-109
/
2011
기계학습은 학습말뭉치로부터 문제를 해결하기 위한 규칙을 학습하여 모델을 생성한다. 생성된 모델의 성능을 높이기 위해서는 문제에 적합한 자질들을 많이 이용해야 하지만 많은 자질들을 사용하면 모델의 생성시간은 느려지는 것이 사실이다. 이 문제를 해결하기 위해 본 논문에서는 다단계 기법을 적용한 기계학습으로 구묶음 시스템을 제작하여 학습모델의 생성시간을 단축하고 성능을 높이는 기법을 제안한다. 많은 종류의 자질들을 두 단계로 분리하여 학습하는 기법으로 1단계에서 구의 경계를 인식하고 2단계에서 구의태그를 결정한다. 1단계의 학습자질은 어휘 정보, 품사 정보, 띄어쓰기 정보, 중심어 정보를 사용하였으며, 2단계 학습자질은 어휘 정보와 품사 정보 외에 1단계 결과에서 추출한 구의 시작 품사 정보와 끝 품사 정보, 구 정보, 구 품사 정보를 자질로 사용하였다. 평가를 위해서 본 논문에서는 ETRI 구문구조 말뭉치를 사용하였다.
This paper proposes a target speech extraction which restores speech signal of a target speaker form noisy convolutive mixture of speech and an interference source. We assume that the target speaker is known and his/her utterances are available in the training time. Incorporating the additional information extracted from the training utterances into the separation, we combine convolutive blind source separation(CBSS) and non-negative decomposition techniques, e.g., probabilistic latent variable model. The nonnegative decomposition is used to learn a set of bases from the spectrogram of the training utterances, where the bases represent the spectral information corresponding to the target speaker. Based on the learned spectral bases, our method provides two postprocessing steps for CBSS. Channel selection step finds a desirable output channel from CBSS, which dominantly contains the target speech. Reconstruct step recovers the original spectrogram of the target speech from the selected output channel so that the remained interference source and background noise are suppressed. Experimental results show that our method substantially improves the separation results of CBSS and, as a result, successfully recovers the target speech.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
1999.05a
/
pp.370-374
/
1999
The proposed algorithm used the Hybrid teaming rule in the input and hidden layer, and Back-Propagation teaming rule in the hidden and output layer. From the results of simulation of tracking control with one link manipulator as a plant, we verify the usefulness of the proposed control method to compare with common direct adaptive neural network control method; proposed hybrid teaming rule showed faster loaming time faster settling time than the direct adaptive neural network using Back-propagation algorithm. Usefulness of the proposed control method is that it is faster the learning time and settling time than common direct adaptive neural network control method.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.215-220
/
2021
다중 도메인에 대해 답변 생성 모델이 동작 가능하도록 하는 가장 쉬운 방법은 모든 도메인의 데이터를 순서와 상관없이 한번에 학습하는 것이다. 하지만 이경우, 발화에 상관 없이 지나치게 일반적인 답변을 생성하는 문제가 발생한다. 이에 반해, 도메인을 분리하여 도메인을 순차적으로 학습할 경우 일반적인 답변 생성 문제를 해결할 수 있다. 하지만 이경우 새로운 도메인의 데이터를 학습할 때, 기존에 학습한 도메인에 대한 성능이 저하되는 파괴적 망각 현상이 발생한다. 파괴적 망각 현상을 해결하기 위하여 다양한 지속학습기법이 제안되었으며, 그 중 메모리 리플레이 방법은 새로운 도메인 학습시 기존 도메인의 데이터를 함께 학습하는 방법으로 파괴적 망각 현상을 해결하고자 하였다. 본 논문에서는, 사람의 기억 시스템에 대한 모형인 앳킨슨-쉬프린 기억 모형에서 착안하여 사람이 기억을 저장하는것과 유사한 방법으로 메모리 리플레이 방법의 메모리 관리방법을 제안하였고, 해당 메모리 관리법을 활용하는 메모리 리플레이 방법을 통해 답변 생성 모델의 파괴적 망각 현상을 줄이고자 하였다. 다중 도메인 답변 생성에 대한 데이터셋인 MultiWoZ-2.0를 사용하여 제안 모델을 학습 및 평가하였고, 제안 모델이 다중 도메인 답변 생성 모델의 파괴적 망각 현상을 감소시킴을 확인하였다.
이 논문에서는 트루타입 폰트의 글자 외곽선 데이터를 이용하여 자동으로 한자의 획을 분리하고 획 순서를 정하는 방법을 제안한다. 트루타입 폰트에는 글자의 외곽선 정보가 벡터 형식으로 저장되어 있으며, 이러한 벡터들은 일정한 규칙으로 배열되어 있다. 이와 같은 벡터들의 배치를 이용하여 한자의 획이 될 수 있는 벡터들의 집합을 조합하여 독립적인 획을 분리해 내고, 글자를 획 별로 분리하여 본래 트루타입 폰트의 저장 형식과 동일한 파일 형식으로 저장한다. 또한 분리된 모든 획에 대하여, 획 이름을 정의하고, 정의된 획들 간의 위치와 상관관계를 이용하여, 획 사이의 우선순위를 결정하여 획 순서를 부여한다. 이 작업들은 사람의 작업 없이 순수하게 자동으로 이루어지므로, 시간과 노력을 최소화 할 수 있다. 게다가, 획 별로 분리되고 순서대로 정리된 한자들은 트루타입 폰트에 저장되어 있는 모양과 특성을 그대로 가지고 있으므로, 단순히 폰트 자체로써 사용할 수도 있을 뿐만 아니라, 한자 학습 컨텐츠로도 이용이 가능하며, 각종 애니메이션 효과 등 다양한 분야에서 융통성 있게 활용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.