• Title/Summary/Keyword: 분리 학습

Search Result 413, Processing Time 0.028 seconds

온톨로지의 구축과 학습: 상하위 관계

  • Choe, Gi-Seon;Ryu, Beop-Mo
    • Communications of the Korean Institute of Information Scientists and Engineers
    • /
    • v.24 no.4 s.203
    • /
    • pp.24-30
    • /
    • 2006
  • 온톨로지의 기본개념, 응용 분야 및 학습 단계에 대하여 간단하게 설명하였고, 온톨로지 학습단계에서 전문 분야의 개념간 계층 관계 학습 방법에 대하여 자세하게 알아보았다. 전문분야 개념을 표현하는 전문 용어 사이의 계층 관계를 학습하는 방법은 크게 규칙 기반 방법, 통계 기반 방법 그리고 용어의 전문성과 유사도를 이용하는 방법으로 나눌 수 있다. 규칙 기반 방법은 비교적 정확한 결과를 얻을 수 있는 장점이 있지만 재현율이 낮은 단점이 있다. 기존은 통계 기반 방법에서는 재현율이 높은 장점이 있지만 정확률이 낮은 단점이 있다. 또한 이 방법에서는 순수하게 통계 정보만 이용하기 때문에 오류에 대한 분석이 어려운 단점이 있다. 용어의 전문성과 용어간 유사도를 이용한 방법에서는 용어의 전문성을 이용하여 기존의 계층 구조에서 상위에 후보를 선택하고, 용어간 유사도를 이용하여 선택한 후보를 정렬하여 최적의 후보를 찾는다. 이 방법은 상위어 선정 과정을 두 단계로 분리하여 수행하기 때문에 오류 분석이 용이한 장점이 있다. 향후 온톨로지 학습 과정에서 계층 관계뿐 아니라 인과 관계 및 다양한 관계의 학습과 관련된 연구가 진행되어야 한다.

Independent Component Analysis Based on Neural Networks Using Secant Method and Moment (할선법과 모멘트에 의한 신경망 기반 독립성분분석)

  • 오정은;김아람;조용현
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.325-329
    • /
    • 2002
  • 본 연구에서는 할선법과 모멘트를 조합한 학습알고리즘의 신경망 기반 독립성분분석 기법을 제안하였다. 제안된 알고리즘은 할선법과 모멘트에 기초를 둔 고정점 알고리즘의 독립성분분석 기법이다. 여기서 할선법은 독립성분 상호간의 정보를 최소화하기 위해 negentropy를 최대화는 과정에서 요구되는 1차 미분에 따른 계산량을 줄이기 위함이고, 모멘트는 최대화 과정에서 발생하는 발진을 억제하여 보다 빠른 학습을 위함이다. 제안된 기법을 256×256 픽셀의 8개 지문영상에서 임의 혼합행렬에 따라 발생되는 혼합지문들을 각각 대상으로 시뮬레이션한 결과, 할선법만에 기초한 기법보다 우수한 분리성능과 빠른 학습속도가 있음을 확인하였다.

  • PDF

Proposal Realtime Reaction Generate Quest System Basement Reinforcement Learning Central System (강화학습 기반 실시간 반응형 퀘스트 생성 시스템 중앙 관리자 영향력 연구)

  • Kim-Tae Hun;Kim-Chang Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.499-500
    • /
    • 2023
  • 강화학습 기반의 다중 에이전트 시스템을 이용한 서버의 실시간 상황을 제공 받아서 상황에 알맞은 퀘스트를 생성해주는 시스템을 제안한다. 학습 가이드 역할을 하는 CTDE 의 중앙 관리자의 역할을 위한 에이전트를 분리하여 작동하게 함으로서 퀘스트의 지향점을 잡는 것이다.

Automatic segmentation of a tongue area and oriental medicine tongue diagnosis system using the learning of the area features (영역 특징 학습을 이용한 혀의 자동 영역 분리 및 한의학적 설진 시스템)

  • Lee, Min-taek;Lee, Kyu-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.826-832
    • /
    • 2016
  • In this paper, we propose a tongue diagnosis system for determining the presence of specific taste crack area as a first step in the digital tongue diagnosis system that anyone can use easily without special equipment and expensive digital tongue diagnosis equipment. Training DB was developed by the Haar-like feature, Adaboost learning on the basis of 261 pictures which was collected in Oriental medicine. Tongue candidate regions were detected from the input image by the learning results and calculated the average value of the HUE component to separate only the tongue area in the detected candidate regions. A tongue area is separated through the Connected Component Labeling from the contour of tongue detected. The palate regions were divided by the relative width and height of the tongue regions separated. Image on the taste area is converted to gray image and binarized with each of the average brightness values. A crack in the presence or absence was determined via Connected Component Labeling with binary images.

The Bi-Cross Pretraining Method to Enhance Language Representation (Bi-Cross 사전 학습을 통한 자연어 이해 성능 향상)

  • Kim, Sung-ju;Kim, Seonhoon;Park, Jinseong;Yoo, Kang Min;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.320-325
    • /
    • 2021
  • BERT는 사전 학습 단계에서 다음 문장 예측 문제와 마스킹된 단어에 대한 예측 문제를 학습하여 여러 자연어 다운스트림 태스크에서 높은 성능을 보였다. 본 연구에서는 BERT의 사전 학습 문제 중 다음 문장 예측 문제에 대해 주목했다. 다음 문장 예측 문제는 자연어 추론 문제와 질의 응답 문제와 같이 임의의 두 문장 사이의 관계를 모델링하는 문제들에 성능 향상을 위해 사용되었다. 하지만 BERT의 다음 문장 예측 문제는 두 문장을 특수 토큰으로 분리하여 단일 문자열 형태로 모델에 입력으로 주어지는 cross-encoding 방식만을 학습하기 때문에 문장을 각각 인코딩하는 bi-encoding 방식의 다운스트림 태스크를 고려하지 않은 점에서 아쉬움이 있다. 본 논문에서는 기존 BERT의 다음 문장 예측 문제를 확장하여 bi-encoding 방식의 다음 문장 예측 문제를 추가적으로 사전 학습하여 단일 문장 분류 문제와 문장 임베딩을 활용하는 문제에서 성능을 향상 시키는 Bi-Cross 사전 학습 기법을 소개한다. Bi-Cross 학습 기법은 영화 리뷰 감성 분류 데이터 셋인 NSMC 데이터 셋에 대해 학습 데이터의 0.1%만 사용하는 학습 환경에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 5점 가량의 성능 향상이 있었다. 또한 KorSTS의 bi-encoding 방식의 문장 임베딩 성능 평가에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 1.5점의 성능 향상을 보였다.

  • PDF

Performance Improvement of Chunking Using Cascaded Machine Learning Methods (다단계 기계학습 기법을 이용한 구묶음 성능향상)

  • Jeon, Kil-Ho;Seo, Hyeong-Won;Choi, Myung-Gil;Nam, Yoo-Rim;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.107-109
    • /
    • 2011
  • 기계학습은 학습말뭉치로부터 문제를 해결하기 위한 규칙을 학습하여 모델을 생성한다. 생성된 모델의 성능을 높이기 위해서는 문제에 적합한 자질들을 많이 이용해야 하지만 많은 자질들을 사용하면 모델의 생성시간은 느려지는 것이 사실이다. 이 문제를 해결하기 위해 본 논문에서는 다단계 기법을 적용한 기계학습으로 구묶음 시스템을 제작하여 학습모델의 생성시간을 단축하고 성능을 높이는 기법을 제안한다. 많은 종류의 자질들을 두 단계로 분리하여 학습하는 기법으로 1단계에서 구의 경계를 인식하고 2단계에서 구의태그를 결정한다. 1단계의 학습자질은 어휘 정보, 품사 정보, 띄어쓰기 정보, 중심어 정보를 사용하였으며, 2단계 학습자질은 어휘 정보와 품사 정보 외에 1단계 결과에서 추출한 구의 시작 품사 정보와 끝 품사 정보, 구 정보, 구 품사 정보를 자질로 사용하였다. 평가를 위해서 본 논문에서는 ETRI 구문구조 말뭉치를 사용하였다.

  • PDF

Target Speaker Speech Restoration via Spectral bases Learning (주파수 특성 기저벡터 학습을 통한 특정화자 음성 복원)

  • Park, Sun-Ho;Yoo, Ji-Ho;Choi, Seung-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.3
    • /
    • pp.179-186
    • /
    • 2009
  • This paper proposes a target speech extraction which restores speech signal of a target speaker form noisy convolutive mixture of speech and an interference source. We assume that the target speaker is known and his/her utterances are available in the training time. Incorporating the additional information extracted from the training utterances into the separation, we combine convolutive blind source separation(CBSS) and non-negative decomposition techniques, e.g., probabilistic latent variable model. The nonnegative decomposition is used to learn a set of bases from the spectrogram of the training utterances, where the bases represent the spectral information corresponding to the target speaker. Based on the learned spectral bases, our method provides two postprocessing steps for CBSS. Channel selection step finds a desirable output channel from CBSS, which dominantly contains the target speech. Reconstruct step recovers the original spectrogram of the target speech from the selected output channel so that the remained interference source and background noise are suppressed. Experimental results show that our method substantially improves the separation results of CBSS and, as a result, successfully recovers the target speech.

Control Method using Neural Network of Hybrid Learning Rule (혼합형 학습규칙 신경 회로망을 이용한 제어 방식)

  • 임중규;이현관;권성훈;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.370-374
    • /
    • 1999
  • The proposed algorithm used the Hybrid teaming rule in the input and hidden layer, and Back-Propagation teaming rule in the hidden and output layer. From the results of simulation of tracking control with one link manipulator as a plant, we verify the usefulness of the proposed control method to compare with common direct adaptive neural network control method; proposed hybrid teaming rule showed faster loaming time faster settling time than the direct adaptive neural network using Back-propagation algorithm. Usefulness of the proposed control method is that it is faster the learning time and settling time than common direct adaptive neural network control method.

  • PDF

Continual Learning with Mimicking Human Memory System For Multi-domain Response Generator (다중 도메인 답변 생성 모델을 위한 인간의 기억 시스템을 모방하는 지속 학습 기법)

  • Lee, Jun-Beom;Park, Hyeong-Jun;Song, Hyun-Je;Park, Seong-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.215-220
    • /
    • 2021
  • 다중 도메인에 대해 답변 생성 모델이 동작 가능하도록 하는 가장 쉬운 방법은 모든 도메인의 데이터를 순서와 상관없이 한번에 학습하는 것이다. 하지만 이경우, 발화에 상관 없이 지나치게 일반적인 답변을 생성하는 문제가 발생한다. 이에 반해, 도메인을 분리하여 도메인을 순차적으로 학습할 경우 일반적인 답변 생성 문제를 해결할 수 있다. 하지만 이경우 새로운 도메인의 데이터를 학습할 때, 기존에 학습한 도메인에 대한 성능이 저하되는 파괴적 망각 현상이 발생한다. 파괴적 망각 현상을 해결하기 위하여 다양한 지속학습기법이 제안되었으며, 그 중 메모리 리플레이 방법은 새로운 도메인 학습시 기존 도메인의 데이터를 함께 학습하는 방법으로 파괴적 망각 현상을 해결하고자 하였다. 본 논문에서는, 사람의 기억 시스템에 대한 모형인 앳킨슨-쉬프린 기억 모형에서 착안하여 사람이 기억을 저장하는것과 유사한 방법으로 메모리 리플레이 방법의 메모리 관리방법을 제안하였고, 해당 메모리 관리법을 활용하는 메모리 리플레이 방법을 통해 답변 생성 모델의 파괴적 망각 현상을 줄이고자 하였다. 다중 도메인 답변 생성에 대한 데이터셋인 MultiWoZ-2.0를 사용하여 제안 모델을 학습 및 평가하였고, 제안 모델이 다중 도메인 답변 생성 모델의 파괴적 망각 현상을 감소시킴을 확인하였다.

  • PDF

Automatic Stroke Extraction and Stroke Ordering Based on TrueTypeFont (트루타입 폰트 기반 한자 자동 획 분할 및 획 순서 부여)

  • Jang, Hyun-Gyu;Koo, Sang-Ok;Jung, Soon-Ki
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.526-534
    • /
    • 2006
  • 이 논문에서는 트루타입 폰트의 글자 외곽선 데이터를 이용하여 자동으로 한자의 획을 분리하고 획 순서를 정하는 방법을 제안한다. 트루타입 폰트에는 글자의 외곽선 정보가 벡터 형식으로 저장되어 있으며, 이러한 벡터들은 일정한 규칙으로 배열되어 있다. 이와 같은 벡터들의 배치를 이용하여 한자의 획이 될 수 있는 벡터들의 집합을 조합하여 독립적인 획을 분리해 내고, 글자를 획 별로 분리하여 본래 트루타입 폰트의 저장 형식과 동일한 파일 형식으로 저장한다. 또한 분리된 모든 획에 대하여, 획 이름을 정의하고, 정의된 획들 간의 위치와 상관관계를 이용하여, 획 사이의 우선순위를 결정하여 획 순서를 부여한다. 이 작업들은 사람의 작업 없이 순수하게 자동으로 이루어지므로, 시간과 노력을 최소화 할 수 있다. 게다가, 획 별로 분리되고 순서대로 정리된 한자들은 트루타입 폰트에 저장되어 있는 모양과 특성을 그대로 가지고 있으므로, 단순히 폰트 자체로써 사용할 수도 있을 뿐만 아니라, 한자 학습 컨텐츠로도 이용이 가능하며, 각종 애니메이션 효과 등 다양한 분야에서 융통성 있게 활용될 수 있다.

  • PDF