• Title/Summary/Keyword: 분리조

Search Result 1,199, Processing Time 0.038 seconds

A Study of Interpretation of Separation Behavior in Gas Expansion Separation(GES) Bolt (가스팽창분리형 볼트 분리거동 해석 연구)

  • Lee Young Jo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • The present work has been developed the study of interpretation of separation behavior in gas expansion separation(GES) bolt which has the separation characteristics without fragmentation and minimum pyre-shock during the operation of the explosive bolt. In order to obtain the performance of minimum pyre-shock, the present work used non-compressive material instead of separation explosives. The use of the interpretation processor could be extensively helped to design the shape and the amount of explosives in the explosive bolt having complex geometry, and to analyse the separation behavior during the operation. It is also proved that the GES bolt is the most suitable the separation system necessary to minimum pyre-shock and non fragmentation compare with others.

Membrane Technologies in Biotechnology (생물공학에서의 막분리기술)

  • 구윤모
    • Membrane Journal
    • /
    • v.8 no.2
    • /
    • pp.69-76
    • /
    • 1998
  • Membrane technologies have been used frequently in industries, taking advantage of that it is energy-saving and employable in relatively large scale. The fact that a non-mass separating agent is used in mild conditions without phase change in membrane separation makes it a method of choice in the recovery of biological materials. Recently, the development of noble separating modules has been solving the inherent problems in membrane separation, the fouling and the concentration polarization. In addition, membrane separation has broadened its applications from the conventional crude separation to the purificational use by the advent of the new and functional membrane materials. The role of membrane technologies is expected to be enormous in the production and recovery of biological products, considering the excellent applicability of membrane in the fields of integrated separation and in-situ separation, the two trends in modem bioseparation.

  • PDF

Separation of ${\alpha}-,\;{\gamma}-,\;{\delta}-tocotrienol$ from latex (천연 latex로부터 ${\alpha}-,\;{\gamma}-,\;{\delta}-tocotrienol$의 분리)

  • Lee, Hyung-Ok
    • Applied Biological Chemistry
    • /
    • v.36 no.1
    • /
    • pp.29-32
    • /
    • 1993
  • 3 $Tocotrienol-{\alpha}-,\;{\gamma}-\;and\;{\delta}-tocotrienol-from$from latex(Hevea Brasiliensis) were isolated and the oily tocotrienol concentrates obtained. To isolate tocotrienols, the fractionation by semipreparative HPLC of the unsaponifiable fraction in the raw lipid extract from latex was carried out. By this method, the total content of tocotrienols in latex was ca. 400 ppm, and the purities of ${\alpha}-,\;{\gamma}-\;and\;{\delta}-tocotrienol$ were 98.3, 99.3 and 96.2%, respectively.

  • PDF

Preparation and Fundamental Characterization of EVOH Hollow Fiber Membranes via Thermally Induced Phase Separation (TIPS) (열유도상분리법을 이용한 EVOH 중공사 분리막의 제조 및 기본 특성)

  • Hou, Jian;Yun, Jaehan;Jeon, Sungil;Chung, Kun Yong;Byun, Hongsik
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.395-405
    • /
    • 2018
  • Poly(ethylene-co-vinylalcohol) EVOH hollow fiber membranes were successfully fabricated via a thermally induced phase separation (TIPS) method. It was observed that all membranes fabricated under different spinning conditions had interconnected and bicontinuous structures through liquid-liquid phase separation. Glycerol and poly(ethylene glycol) 200 were used as diluents for the TIPS method. Glycerol was used as a mixing component in quenching bath to control pores on the outer surface of the hollow fiber membrane. Hot quenching bath with a mixing component to generate large pores on the outer surface of the hollow fiber membrane. The effects of polymer concentration, diluent and quenching bath on the morphologies, water permeabilities, and mechanical properties of the EVOH hollow fiber membranes were systematically investigated. The relationship between water permeability, mechanical properties and spinning conditions was discussed in detail.

Study on Applicability of Cloth Simulation Filtering Algorithm for Segmentation of Ground Points from Drone LiDAR Point Clouds in Mountainous Areas (산악지형 드론 라이다 데이터 점군 분리를 위한 CSF 알고리즘 적용에 관한 연구)

  • Seul Koo ;Eon Taek Lim ;Yong Han Jung ;Jae Wook Suk ;Seong Sam Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.827-835
    • /
    • 2023
  • Drone light detection and ranging (LiDAR) is a state-of-the-art surveying technology that enables close investigation of the top of the mountain slope or the inaccessible slope, and is being used for field surveys in mountainous terrain. To build topographic information using Drone LiDAR, a preprocessing process is required to effectively separate ground and non-ground points from the acquired point cloud. Therefore, in this study, the point group data of the mountain topography was acquired using an aerial LiDAR mounted on a commercial drone, and the application and accuracy of the cloth simulation filtering algorithm, one of the ground separation techniques, was verified. As a result of applying the algorithm, the separation accuracy of the ground and the non-ground was 84.3%, and the kappa coefficient was 0.71, and drone LiDAR data could be effectively used for landslide field surveys in mountainous terrain.

Isolation of Microorganisms and Development of Microbial Augmentation for Treatment of Industrial Wastewater containing Ammonium Nitrogen (암모니아성 질소함유 산업폐수처리를 위한 미생물의 분리 및 복합미생물제제의 개발)

  • Lee, Myoung-Eun;Mun, Seo-Jin;Kwon, Do-Hyuck;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.129-136
    • /
    • 2020
  • For effective treatment of wastewater containing ammonium nitrogen (NH4-N), AT2, AT9, and AT12 strains, having high total organic carbon (TOC) removal capability, and FN47, possessing excellent ammonia nitrogen removal capability present in the activated sludge in the aeration tank of food wastewater treatment plants, were isolated and identified. The cells of these isolated strains were used for microbial augmentation with FIW-1 in the defatted rice bran as a medium to treat industrial wastewater. The investigation of the cultural characteristics of these isolated strains in the aeration tank showed that the affinities for substrate of the isolated strains were extremely high, of which AT12 (Alcaligenes sp. AT12) was the highest among the isolated strains. Ammonium nitrogen removal efficiency in the food wastewater was 71% in the isolated strain FN47 (Microbacterium sp. FN47) treatment group. When only activated sludge was added in the lab scale pilot using food wastewater during continuous culture experiment, the TOC removal efficiency was 63%. Meanwhile, the removal efficiency of 92% was obtained when the microbial augmentation FIW-1 for wastewater treatment was applied. In addition, the chemical oxygen demand (COD) level from the effluent wherein microbial augmentation FIW-1 was input for the initial three days in the wastewater treatment site experiment showed a treatment rate of about 43%, which was increased to 62% after an elapse of 5 days.

Mathematical separation behavior modeling for the split-type separation device (스플릿 타입 분리장치의 수학적 동적 분리 거동 모델링)

  • Hwang, Dae-Hyun;Han, Jae-Hung;Lee, Yeungjo;Kim, Dongjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.423-425
    • /
    • 2017
  • When many space launchers and rockets need to be separated, the pyrotechnic separators have been widely used because of their high reliability and high energy generation. However, intensive pyroshock and debris from the high-explosive type separator may cause fatal damage to the equipment inside of the space launchers or rockets. To solve this problem, a pressure-cartridge type low-impact separator has been developed. In this study, one of the low-impact separators, the split-type pyrolock, was used. We established a mathematical model for the split-type pyrolock that simulates the state of combustion gas and the separation behavior of four independent internal components and verified the mathematical model through comparing with experiment results.

  • PDF