• Title/Summary/Keyword: 분리수도

Search Result 301, Processing Time 0.029 seconds

Role of Crossflow Module Media in Gas-liquid-solid Separation and Biomass Retention in Hybrid Anaerobic Filter (교차흐름식 모듈 충전 hybrid 혐기성여상의 기·액·고 분리능 및 슬러지보유능)

  • Chang, Duk;Chae, Hee-Wang;Bae, Hyung-Suk;Chung, In;Han, Sang-Bae;Hur, Joon-Moo;Hong, Ki-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.769-778
    • /
    • 2009
  • Performances and internal behaviors of the upflow hybrid anaerobic filters treating a dairy wastewater were analyzed to identify the functions and roles of the modular crossflow media and sludge bed layer and to discover their interrelationship in the filter. The media could perform independent biological and physical separation role without buildup of sludge bed, while the role of sludge bed was dependent on the function of the media. The filter packed with the crossflow media did not necessarily require the formation of sludge bed when treating a dairy wastewater. Biological contribution of the media was controlled by that of biologically active sludge bed complementing mutually each other. The gas-liquid-solid separation capability of the media was indispensible to ensure the active biological role of sludge bed, since sludge bed buildup without the media had no independently effective biological function. It was believed that the filter in itself could also function as a selector for physical gas-liquid-solid separation resulting in selectively concentrating particles with superior settleability in sludge bed. The sludge bed in the filter played a key role in the physical solids capture from influent as well as biological organics removal.

Pollutant Control using the Separation Wall between Stormwater and Sewage in a Combined Sewer System (우오수분리벽을 이용한 합류식 하수관거의 오염물질 제어효과)

  • Lee, Kuang Chun;Choi, Bong Choel;Lim, Bong Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.461-469
    • /
    • 2004
  • This research is to determine the stormwater effects on sewer concentrations by measuring and comparing the flow and pollutant concentrations during dry and rainy periods in the existing BOX type combined sewer pipes. The monitoring was carried out in two sites, which are the Daesachen outfall having PE separation wall in BOX type combined sewer pipes and the Yongunchen outfall not having seperatioin wall. The average flow-weighted BOD concentraion in Yongunchen outfall is 2-fold lower than in Daesachen outfall because of the dilution effect from ravine water. However, the pollutant mass loading is 16 fold higher in Yongunchen outfall than in Daesachen outfall because of more flows. According to the research, the separation wall controls 52% pollutant mass during a storm period (11.5 mm/hr rainfall intensity). Therefore, the Yongunchen combined sewer system (CSS) need separation wall to control and to prevent more pollutant input in stream. In Daesachen area, the maximum sewer flow rate during a storm period measured about 10 fold bigger than average sewer flow during dry periods. Also the concentrations between rainy and dry periods increase approximately 33 fold for BOD and 120 fold for SS. In Yongunchen area, it increases about 9 fold for the maximum flow rate, 18 fold for BOD and 22 fold for SS during a storm. Therefore, the research is concluded that the separation wall between stromwater (or ravine water) and sewage can decrease the dilution effect in CSS and control the pollutant loading.

Estimation of damage area on membrane surface by application of fluorescent particles as a surrogate (형광입자를 이용한 분리막 표면 검측과 손상 면적 추정 오차에 대한 연구)

  • Choi, Yunkyeong;Kim, Choah;Kim, Heejun;Cho, Jinwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.171-179
    • /
    • 2014
  • In this study, a novel method was proposed to test the integrity of water treatment system specifically equipped with membrane filtration process. We applied the silica particles coated with a fluorescent agent (rhodamine B isothiocyanate) as a surrogate to detect a membrane process integrity and evaluate the reliability of effluent quality in the system. Additionally, a series of experiments was conducted to evaluate the sensitivity of the method through the laboratory scale experiment. The laboratory scale experiments showed that the feasibility of application of proposed method to detect a breach or damaged part on the membrane surface. However, the sensitivity on predicting the area of a breach was significantly influenced by the testing conditions such as a concentration of surrogate, filtration flux, and detection time. The lowest error of predicting the area of breach was 3.5% at the testing condition of surrogate concentration of 80 mg/L injected with flux of $20L/m^2/hr$ for 10 minutes of detection time for the breach having the actual area of $7.069mm^2$. However, the error of estimation was increased at the small breach with area less than $0.785mm^2$. A future study will be conducted to estimate a damaged area with more accuracy and precision.

Optimal Operating Condition of Vortex Separator for Combined Sewer Overflows Treatment (합류식 하수관거 월류수 처리를 위한 와류형 분리장치의 최적 운전조건)

  • Han, Jung-kyun;Joo, Jae-young;Lee, Bum-joon;Na, Ji-hun;Park, Chul-hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.557-564
    • /
    • 2009
  • A combined sewer system can quickly drain both storm water and sewage, improve the living environment and resolve flood measures. A combined sewer system is much superior to separate sewer system in reduction of the non-point source pollutant load. However, during rainfall. it is impossible in time, space and economic terms to cope with the entire volume of storm water. A sewage system that exceeds the capacity of the sewer facilities drain into the river mixed with storm-water. In addition, high concentration of CSOs by first-flush increase pollution load and reduce treatment efficiency in sewage treatment plant. The aim of this study was to develope a processing unit for the removal of high CSOs concentrations in relation to water quality during rainfall events in a combined sewer. The most suitable operational design for processing facilities under various conditions was also determined. With a designed discharge of 19.89 m/min, the removal efficiency was good, without excessive overflow, but it was less effective in relation to underflow, and decreased with decreasing particle size and specific gravity. It was necessary to lessen radius of vortex separator for increasing inlet velocity in optimum range for efficient performance, and removal efficiency was considered to high because of rotation increases through enlargement of comparing height of vortex separator in diameter. By distribution of influent particle size, the actual turbulent flow and experimental results was a little different from the theoretical removal efficiency due to turbulent effect in device.

Synthesis and Phosphorus Adsorption Characteristics of Zirconium Magnetic Adsorbent Having Magnetic Separation Capability (자기분리가 가능한 지르코늄 자성 흡착제의 합성과 인 흡착 특성)

  • Lim, Dae-Seok;Kim, Yeon-Hyung;Kim, Dong-Rak;Lee, Tae-Gu;Lim, Hak-Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.431-442
    • /
    • 2012
  • The purpose of this study, is to separate magnetic separation devices using permanent magnets by using magnetization characteristics remaining in treated water after adsorption and synthesizing phosphorus adsorbent capable of magnetic separation for efficient removal of phosphorus. The synthesis of the adsorbent which set Zirconium(Zr) having high friendly features for phosphorus as an element, and by synthesizing Iron Oxide($Fe_3O_4$, another name of $Fe_3O_4$ is magnetite) being able to grant magnetism to Zirconium Sulfate($Zr(SO_4)_2$), zirconium magnetic adsorbent(ZM) were manufactured. In order to consider the phosphorus adsorption characteristics of adsorbent ZM, batch adsorption experiment was performed, and based on the results, pH effect, adsorption isotherm, adsorption kinetics, and magnetic separation have been explore. As the experiment result, adsorbent ZM showed a tendency that the adsorption number was decreased rapidly at pH 13; however, it was showed a high amount of phosphorus removal in other range and it showed the highest amount of phosphorus removal in pH 6 of neutral range. In addtion, the Langmuir adsorption isotherm model is matched well, and D-R adsorption isotherm model is ranged 14.43kJ/mol indicating ion exchange mechanism. The result shown adsorption kinetics match well to the Pseudo-second-order kinetic model. The adsorbent ZM's capablility of regenerating NaOH and $H_2SO_4$, was high selectivity on the phosphorus without impacts on the other anions. The results of applying the treated water after adsorption of phosphorus to the magnetic separation device by using permanent magnets, shows that capture of the adsorbent by the magnetization filter was perfect. And they show the possibility of utilization on the phosphorus removal in water.

Coagulation-membrane separation hybrid treatment of secondary treated effluent for high efficiency phosphorus removal (하수 2차처리 방류수의 총인 고효율 처리를 위한 응집·막분리 혼성처리)

  • Choi, Wookjin;Lee, Byungha;Park, Joonhong;Cha, Hoyoung;Lee, Byungchan;Song, Kyungguen
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2018
  • This study investigated phosphorus removal from secondary treated effluent using coagulation-membrane separation hybrid treatment to satisfy strict regulation in wastewater treatment. The membrane separation process was used to remove suspended phosphorus particles after coagulation/settlement. Membrane separation with $0.2{\mu}m$ pore size of micro filtration membrane could reduce phosphorus concentration to 0.02 mg P/L after coagulation with 1 mg Al/L dose of polyaluminum chloride (PACl). Regardless of coagulant, the residual concentration of phosphorus decreased as the dose increased from 1.5 to 3.5 mg Al/L, while the target concentration of 0.05 mg P/L or less was achieved at 2.5 mg Al/L for the aluminum sulfate (Alum) and 3.5 mg Al/L for PACl. Moreover, alum showed better membrane flux as make bigger particles than PACl. Alum showed a 40% of flux decrease at 2.5 mg Al/L dose, while PACl indicated a 50% decrease of membrane flux even with a higher dose of 3.5 mg Al/L. Thus, alum was more effective coagulant than PACl considering phosphorus removal and membrane flux as well as its dose. Consequently, the coagulation-membrane separation hybrid treatment could be mitigate regulation on phosphorus removal as unsettleable phosphorus particles were effectively removed by membrane after coagulation.

Stability Evaluation of Phased Isolation Intra-Clarifier Ditch Process on Short-Term Hydraulic Shock Loading (단기 수리학적 충격부하시 침전지 내장형 상분리 산화구공정의 처리 안정성 평가)

  • Hong, Ki-Ho;Chang, Duk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.791-799
    • /
    • 2005
  • The phased isolation intra-clarifier ditch system used in this study is a simplified novel process enhancing simultaneous removal of biological nitrogen and phosphorus in municipal wastewater in terms of elimination of additional pre-anaerobic reactor, external clarifier, recycle of sludge, and nitrified effluent recirculation by employing intrachannel clarifier. Laboratory-scale phased isolation ditch system was used to assess the treatability on municipal wastewater. When the system was operated at the HRTs of 6~12hours, SRTs of 9~31days, and cycle times of 2~8hours, the system showed removals of BOD, TN, and TP as high as 88~97%, 70~84%, and 65~90%, respectively. The rainfall in Korea is generally concentrated in summer because of site-specific characteristics. Especially, the wet season has set in on June to August. In combined sewers, seasonal variations are primarily a function of the amount of stormwater that enters the system. In order to investigate the effect of hydraulic shock loading on system performance, the laboratory-scale system was operated at an HRT of 6hours (two times of influent flowrate) during two cycles (8hours). The system performance slightly decreased by increasing of influent flowrate and decreasing of system HRT. Nitrification efficiency and TN removal were slightly decreased by increasing of influent flowrate (decreasing of system HRT), whereas, the denitrification was not affected by hydraulic shock loading. However, the higher system performance could be achieved again after four cycles. Thus, the phased isolation technology for enhanced biological nutrient removal in medium- and small-scale wastewater treatment plants suffering fluctuation of influent quality and flowrate.

Application of fluorescent particles as a tracer to detect the membrane surface damage in a pilot scale membrane bioreactor (형광입자를 이용한 분리막 표면 검측 방법의 파일럿 규모 플랜트 적용)

  • Kim, Choah;Kim, Hee Jun;Cho, Jinwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • In this study, a fluorescent silica nano particle is used as the surrogate for challenging test of membrane surface integrity. The particles are functionalized by a fluorescent dying agent so that as an ultraviolet light is imposed a bright fluorescent image from the particles can be taken. If a membrane surface is damaged and has a compromised part larger than the size of surrogate the fluorescent particles would pass through and contained in the permeate. An operator can directly notice whether the membrane surface is damaged or not by detecting a fluorescent image taken from the permeate. Additionally, the size of compromised part is estimated through analysing the fluorescent image in which we surmise the mass of particles included in the permeate by calculating an average RGB value of the image. The pilot scale experiments showed that this method could be applied successfully to determine if a membrane surface had a damaged parts regardless of the test condition. In the testing on the actual damaged area of $4.712mm^2$, the lowest error of estimating the damaged area was -1.32% with the surrogate concentration of 80 mg/L, flux of $40L/m^2/hr$ for 25 minutes of detection. A further study is still going on to increase the lowest detection limit and thus decrease the error of estimation.

New Technologies for Enhancing Particles Separation Efficiency in Coagulation and Filtration (입자분리효율을 높이기 위한 새로운 기술)

  • Kunio, Ebie;Jang, Il-Hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.254-269
    • /
    • 2004
  • Polysilicato-iron coagulant (PSI) is receiving attention in Japan as a substitute for aluminum-based coagulants. In the first part of this article, coagulation, sedimentation and filtration experiments were carried out using kaolin clay particles as the turbidizing material and four types of PSI with various molar ratios of polysilicic acid to ferric chloride (Si/Fe ratio). Results demonstrate that use of a PSI with a high Si/Fe ratio can cause a more dramatic decrease in treated water turbidity but a higher suction time ratio (STR) than when PACl is used. However, optimization by increasing the rapid agitation strength GR is found to greatly improve the STR. In addition, the series of filtration experiments verified that optimization of GR is greatly effective in controlling rapid increases in filter head loss, and also formation of a thin aging layer in the upper part of the filter bed by slow-start filtration is effective in improving filtered water turbidity over the entire filtration process. The second part of this article describes two innovative filtration techniques to increase the particle separation efficiency; (1) coagulant-coated filter medium by enhancing the electrical potential of the surface of the filter medium, and (2) coagulant dosing in influent by controlling the electrical potential of particles entering the filter layer. From the results of the various filtration experiments using a pilot plant, these two techniques were found to be very effective to reduce the effluent water turbidity from the start to the end of a filter run. Moreover, in the filtration experiments using these two methods simultaneously, higher removal efficiency of approximately 3-log (99.7%) was realized, resulting that the finished water turbidity was accordingly reduced to 0.004mg/L.

Pathogenicity of Rhizoctonia Isolates from Southern Horticultural Area in Korea (남부지방에 발생하는 Rhizoctonia solani의 병원성)

  • Roh Myung Ju;Kim Hee Kyu
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.217-222
    • /
    • 1987
  • Pathogenicity of nine Rhizoctonia solani isolates of different anastomosis groups (AG) on seed and hypocotyls of red pepper, cucumber, Chinese cabbage and radish varied considerably from nonvirulent to highly virulent. Rhizoctonia solani AG 1 was highly virulent on the above four plant species. AG 2 type 1 was highly virulent on radish and Chinese cabbage, moderately virulent on red pepper, and AG 2 type 2 was avirulent or weakly virulent except red pepper. R. solani AG 5 was moderately virulent on hosts tested. In general, virulence of the R. solani isolates to a given host varied among anastomosis groups, but not within anastomosis groups. Anastomosis groups lacked host specificity. The pathogenicity was stronger in steam-sterilized soil than in non-sterilized field soil, if the inoculated plants were closely related with orginal host from which the pathogen was isolated. On the other hand, pathogen was more virulent in non-sterilized field soil than in steam-sterilized soil, if the inoculated ones were not closely related. Generally, contrary to other soil-brone plant pathogenic fungi, Rhizoctonia isolates tended to be more virulent in non-sterilized field soil than in the same soil which had been steamed. A potential danger of building up propagules of R. solani in southern horticultural area are discussed in terms of cropping system.

  • PDF